Ufficio federale dell'energia UFE

3 agosto 2017

Principi per il calcolo dell'equivalente benzina e dell'equivalente benzina dell'energia primaria nell'ambito della revisione dell'etichettaEnergia

1 Calcolo dell'equivalente benzina

L'equivalente benzina è calcolato secondo la seguente formula:

$$EB_f = \frac{\rho_f \times \textit{Correzione consumo secondo norma} \times h_{i,f}}{\rho_{benzina} \times h_{i,benzina}} \quad \text{;} \quad EB_{energia \, elettrica} = \frac{1}{\rho_{benzina} \times h_{i,benzina} \times c}$$

dove:

$$EB_f = equivalente \ benzina \ del \ carburante \ fin \ \frac{l \ equivalente \ benzina}{l \ carburante \ liquido} \ \ \text{;} \ \frac{l \ equivalente \ benzina}{m^3 \ gas}$$

$$EB_{energia\;elettrica} = equivalente\;benzina\;dell'energia\;elettrica\;in\;\frac{l\;equivalente\;benzina}{kWh\;energia\;elettrica}$$

$$\rho_f = \text{ densità del carburante f in } \frac{kg}{l}$$
; $\frac{kg}{m^3}$

$$h_{i,f} \, = \, potere \, calorifico \, (inferiore) \, del \, carburante \, f \, in \, \frac{MJ}{kg} \; ; \, \frac{MJ}{m^3}$$

$$c = \text{costante} = 0.2778 \frac{\text{kWh}}{\text{MJ}}$$

Correzione consumo secondo norma: Nel caso del CNG / 10 % biogas, conformemente a quanto indicato dall'EMPA, la densità è stata corretta sulla base del fattore 0,963 per tenere conto della divergenza tra la normativa UE e il carburante testato.

Carburante	Equivalente benzinat	Densità del car- burante [kg/l ; kg/m³]	Potere calorifico (inferiore) del car- burante [MJ/kg; MJ/m³]
Benzina	1.00	0.749	41.67
Diesel	1.13	0.835	42.22
CNG	1.04	0.654	49.65
GPL	0.80	0.538	46.23
E-85	0.73	0.783	29.03
Energia elettrica	0.12	*	*
Idrogeno	0.34	0.0899	120

Fonti: Scheda UFAM: «Fattori di emissione di CO₂ secondo l'inventario svizzero dei gas serra»; Laboratorio federale di prova dei materiali e di ricerca (EMPA)

2 Calcolo dei fattori di energia primaria

I fattori di energia primaria sono calcolati secondo la seguente formula:

$$\text{FEP}_{\text{f}} = \frac{\text{IEC}_{\text{f}}}{\text{h}_{\text{i,f}}}$$
; $PEF_{CNG} = \frac{KEA_{CNG}}{h_{i,CNG,KBOB}}$; $\text{FEP}_{\text{energia elettrica}} = \text{IEC}_{\text{energia elettrica}} \times c$

dove:

 $FEP_f = fattore \ di \ energia \ primaria \ del \ carburante \ f \ in \ \frac{MJ \ energia \ primaria}{MJ}$

 $FEP_{energia\;elettrica}\;=\;$ fattore di energia primaria dell'energia elettrica in $\frac{MJ\;energia\;primaria}{MJ}$

 $IEC_f = input \, energetico \, cumulato \, per \, la \, produzione \, di \, un'unit\grave{a} \, di \, carburante \, f \, in \, \frac{MJ \, energia \, primaria}{kg \, carburante}$

 $IEC_{energia\;elettrica} = \; input\;energetico\;cumulato\;per\;la\;produz.\;di\;un'unit\grave{a}\;di\;en.\;elettrica\;in\;\;\frac{MJ\;energia\;primaria}{kWh\;energia\;elettrica}$

 $h_{i,f} = \text{potere calorifico del carburante f in } \frac{MJ}{\text{kg carburante}}$

 $h_{i,CNG,KBOB}$

= potere calorifico del carburante CNG / 10% biogas secondo dati bilancio KBOB in $\frac{\text{MJ}}{\text{kg carburante}}$

Carburante	Fattore di ener- gia primaria [MJ-eq/MJ]	Input energetico cumulato [MJ/kg]	Potere calorifico (inferiore) del car- burante [MJ/kg]
Benzina	1.36	57.68	42.50
Diesel	1.30	55.15	42.50
CNG / 10% biogas	1.07	53.15	49.65
GPL	1.20	55.37	46.23
E-85	3.05	88.43	29.03
Energia elettrica	2.79	10.06 ¹	*
Mix d'idrogeno, da	2.41	290	120
stazione di servi- zio (Svizzera)			

¹ Unità MJ-eq/kWh.

Carburante	Set di dati della base di dati KBOB DQRv2:2016 corrispondente		
	#	Nome	
Benzina	1566	Petrol, low-sulphur, at regional storage, CH [kg]	
Diesel	1547	Diesel, low-sulphur, at regional storage, CH [kg]	
CNG	6153	Natural gas, production mix, at service station, CH [kg]	
Biogas	6163	Methane, 96-vol.%, from biogas, production mix, at service sta-	
		tion, CH [kg]	
GPL	11798	Liquefied Petroleum Gas (LPG), at service station, CH [kg]	
E-85	11797	Petrol, 85% vol. ethanol, from Swedish wood, at service station,	
		CH [kg]	
Energia elettrica	11363	electricity, low voltage, consumer mix, at grid, CH [kWh]	
Mix d'idrogeno, da sta-		Calcolo poprio1	
zione di servizio (Sviz-			
zera)			

Fonte: KBOB base dati per ecobilancio DQRv2:2016.

#: Numero ID secondo base di dati ecoinvent v2.2:2010

Maggiori informazioni sulla composizione del mix d'idrogeno da stazione di rifornimento (Svizzera) sono reperibili nel seguente rapporto: Tschümperlin L. e Frischknecht R. (2017) «Ökobilanz von Wasserstoff als Treibstoff» Aggiornamento 2017. treeze Ltd., Uster, CH.

3 Calcolo dell'equivalente benzina dell'energia primaria

L'equivalente benzina dell'energia primaria è calcolato secondo la seguente formula:

$$EBEP_f = \frac{\rho_f \times \text{Correzione consumo secondo norma} \times h_{i,f} \times \text{FEP}_f}{\rho_{benzina} \times h_{i,benzina} \times \text{FEP}_{benzina}} \; ; \; EBEP_{energia elettrica} = \frac{\text{FEP}_{energia elettrica}}{\rho_{benzina} \times h_{i,benzina} \times \text{FEP}_{benzina} \times c}$$
 Dove:
$$EBEP_f = equivalente \; benzina \; dell'energia \; primaria \; del \; carburante \; f \; in \; \frac{1 \, \text{EBEP}}{1 \, \text{carburante liquido}} \; ; \; \frac{1 \, \text{EBEP}}{m^3 \; \text{gas}}$$

$$EBEP_{energia \; elettrica} = \; equivalente \; benzina \; dell'energia \; primaria \; dell'energia \; elettrica \; in \; \frac{1 \, \text{EBEP}}{kWh \; energia \; elettrica}$$

Carburante	Equivalente benzina dell'energia primaria
Benzina	1.00
Diesel	1.08
CNG / 10% biogas	0.82
GPL	0.70
E-85	1.63
Energia elettrica	0.24
Mix d'idrogeno, da stazione di servizio (Svizzera)	0.60