Rapport final, juin 2005

Potentiel énergétique des pompes à chaleur combinées au couplage chaleur-force

Pour une réduction maximale des émissions de CO₂ et pour une production de courant fossile avec réduction des émissions de CO₂ en Suisse

Mandant:

Direction de la section Energies renouvelables, Office fédéral de l'énergie OFEN, 3003 Berne

Auteur:

OFEN, F. Rognon, responsable du domaine chaleur ambiante, CCF, froid

Groupe d'accompagnement:

Groupe d'accompagnement du domaine chaleur ambiante, CCF, froid

Table des matières

1.	Résumé	4
2.	Introduction	7
3.	Potentiels énergétiques	8
3.1.	Potentiel théorique	8
3.2.	Potentiel technique	8
3.3.	Potentiel économique	9
3.4.	Potentiel réalisable	. 10
3.5. réal	Mise à disposition de l'électricité d'entraînement pour le potentiel lisable	. 11
4.	Potentiel de réduction maximale des émissions de CO ₂	. 15
5. 10%	Potentiel de la production d'électricité fossile avec une réduction de 0% du CO ₂	
	Potentiel de la production d'électricité fossile avec une réduction de 1 émissions de CO ₂	
	Potentiel de production d'électricité fossile avec stagnation des ssions de CO ₂	. 19
6.	Commentaires/Explications relatives aux hypothèses	. 21
7.	Références	. 25
8.	Liste des abréviations	. 27
9.	Liste des figures et tableaux	. 28
10.	Annexes	. 29
10.1	I. Calcul du nombre d'installations d'ici 2050	. 29
10.2	2. Vue d'ensemble marché du chauffage 2000 et 2003	. 34
10.3 bâti	3. Vue d'ensemble agents énergétiques des chauffages dans les iments, selon recensement de la population 2000	. 34
10.4	• •	

Résumé

En Suisse, la chaleur basse température utilisée pour le chauffage de locaux et la production d'eau chaude provient à 80% par combustion. En 2000, il y avait en Suisse un million de chaudières à gaz ou mazout, qui généraient environ la moitié des 41,1 millions de tonnes de CO₂ du pays.

Or il existe une solution plus efficace: la pompe à chaleur (PAC). Elle utilise l'énergie renouvelable ambiante (sol, nappes souterraines, eaux lacustres et fluviales, air extérieur) et la restitue à un niveau utilisable. La source de chaleur est constamment renouvelée par le rayonnement solaire, les précipitations et la géothermie.

Grâce à l'énorme potentiel de notre environnement, on peut, en l'état actuel des choses, remplacer la moitié des chaudières par des pompes à chaleur, ce qui correspond à 90 PJ/a de chaleur utile ou 500'000 installations.

Fig. 1: Flux d'énergie des chaudières à combustible fossile

L'électricité d'entraînement des pompes à chaleur provient du remplacement des chauffages électriques et des chaudières par des installations à couplage chaleur-force (CCF) qui exploitent pleinement la chaleur. Le courant nécessaire peut ainsi être entièrement produit sans nécessiter la construction de nouvelles installations de production d'électricité.



Fig. 2: Flux d'énergie des pompes à chaleur combinées à des installations à couplage chaleur-force

Avec le courant issu du couplage chaleur-force on diminue de moitié l'utilisation de combustibles et les émissions de CO_2 . Si l'on considère l'ensemble des émissions de combustibles en Suisse, de 24,3 millions de tonnes de CO_2 , la réduction est de 5 millions de tonnes de CO_2 , soit 21% des émissions actuelles.

L'électricité d'entraînement peut également provenir de nouvelles centrales à cycle combiné (CCC), avec ou sans utilisation de chaleur. Dans ce cas, la réduction de combustibles et de polluants est plus importante qu'avec un CCF conventionnel. En cas d'utilisation partielle ou totale de la chaleur par la centrale, cette réduction est encore supérieure.

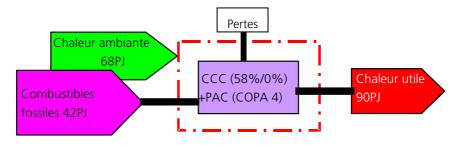


Fig. 3: Flux d'énergie des pompes à chaleur combinées à une (ou plusieurs) centrale(s) à cycle combiné: la totalité du courant actionne des pompes à chaleur.

Autre possibilité: maintenir les émissions de CO₂ au même niveau tout en produisant du courant fossile. Les quantités de CO₂ éliminées grâce au remplacement des chaudières à gaz ou mazout permettent de compenser la production de courant fossile.

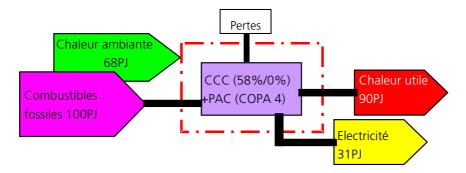


Fig. 4: Flux d'énergie des pompes à chaleur combinées à une (ou plusieurs) centrale(s) à cycle combiné: 42% du courant actionne des pompes à chaleur.

Les émissions de CO₂ restent identiques mais 31 PJ/a, soit 8,6TWh/a, d'électricité sont produits, ce qui représente 15% de la consommation nationale en 2004.

Les potentiels énergétiques et la réduction des émissions de CO₂ se présentent comme suit:

Potentiels (chiffres arrondis!)	Technique (possible du point de vue techni- que)	marché)	assumé par le d'ici 2010
Energie ambiante (PJ/a)	176	72	10
Contribution aux objectifs de SuisseEnergie (%)	1630%	712%	93%
Chaleur utile produite (PJ/a)	220	90	14.4
Proportion chaleur utile CH	80%	33%	7%
Réduction CO ₂ , nette (t)	12'200'000	5'000'000	800'000
Contribution à la réduction CO ₂ des combustibles (%)	50%	21%	3%
Contribution à la réduction CO₂ de toute la Suisse (%)	30%	12%	2%

Tableau 1: Potentiels de la chaleur ambiante et de la chaleur utile qui peut en être dégagée grâce aux pompes à chaleur. La production d'électricité d'entraînement est prise en compte dans la réduction des émissions de CO₂.

Converti en nombre d'unités (les chiffres indiqués sont des potentiels, pas des objectifs!):

Potentiels (chiffres arrondis!)	réalisable sur le plan éco-		
	nomique		
	2050	d'ici 2010	
Nombre potentiel de PAC par an	40'000	15'000	
Part de marché potentielle par an	80%	30%	
Nombre potentiel de PAC cumulé	500'000	130'000	
Proportion potentielle du parc de chauffage CH	50%	13%	

Tableau 2: Potentiels de la chaleur ambiante et de la chaleur utile qui peut en être dégagée grâce aux pompes à chaleur, convertis en nombre d'unités. La production d'électricité d'entraı̂nement est prise en compte dans la réduction des émissions de CO_2 .

2. Introduction

Le potentiel de transformation de la chaleur ambiante en chaleur utile grâce aux pompes à chaleur n'a plus été analysé depuis longtemps [6], ou alors uniquement en marge d'études plus générales [9], [10]. Les pages qui suivent intègrent les dernières découvertes sur les plans du marché, de la technique et des sciences. Le potentiel de réduction des émissions de CO₂ est également examiné dans ce contexte.

En Suisse, la moitié des émissions de CO₂ sont générées par le chauffage de locaux et la production d'eau chaude et un tiers environ par les transports. Or il est possible dès maintenant d'utiliser d'autres technologies. En effet, il existe sur le marché d'autres solutions que la chaudière. Nous examinerons ci-après l'utilisation de pompes à chaleur pour le chauffage de locaux ou la production d'eau chaude.

En 2000, il existait en Suisse un million de chaudières à gaz ou mazout, qui généraient environ la moitié des 41,1 millions de tonnes de CO_2 du pays. Comme le montrera le chapitre 3, le potentiel de 90 PJ/a des pompes à chaleur correspond à quelque 500'000 chaudières.

Fig. 5: Flux d'énergie des chaudières à combustible fossile

Remarque: les valeurs indiquées et estimées ci-après sont des ordres de grandeurs. Il s'agit de pétajoule (PJ), de téra- et de gigawattheure (TWh et GWh). Les définitions des différents potentiels proviennent de [15]. A la différence de publications antérieures, nous souhaitons exprimer toutes les quantités d'énergie en nombres, non pas pour viser une exactitude absolue, mais plutôt pour rendre ces chiffres énormes et abstraits plus concrets.

Comme ces données sont des potentiels et non des perspectives, elles ne sont pas accompagnées d'un calendrier déterminé. Le potentiel continuera à exister aussi longtemps qu'il sera nécessaire de chauffer des bâtiments et de produire de l'eau chaude. Les potentiels ne constituent pas non plus des objectifs: ils montrent ce qui est du domaine du possible, pas ce qui est nécessaire.

3. Potentiels énergétiques

3.1. Potentiel théorique

Nous entendons par potentiel théorique la limite supérieure absolue, c'est-à-dire l'énergie disponible en vertu des lois physiques. Selon [7], le potentiel de chaleur ambiante se monte à 43'300GWh/a, soit 156PJ/a. Il faut noter que la source de chaleur air, la plus importante, n'est prise en compte et que celle des sondes géothermiques est comptée de manière très conservatrice.

Toutefois, nous ne pouvons nous baser que sur les sources de chaleur immédiatement disponibles. Dans [21] et [9], on a analysé la disponibilité de toutes les sources de chaleur (sol, nappes souterraines, eaux de surface et rejets de chaleur) situées à proximité des consommateurs, à l'exception de l'air extérieur. Les potentiels sont les suivants: 107TJ pour les eaux de surface, 18PJ/a pour les nappes souterraines, 18PJ/a pour la géothermie peu profonde (pas encore exploitée à l'heure actuelle), 26PJ/a pour les eaux usées des STEPs. Le potentiel de chaleur ambiante (géothermie, nappes souterraines, eaux de surface, eaux usées) se monte ainsi à 169 PJ/a.

Quant à la source de chaleur air, elle est disponible partout. L'utilisation de l'énergie provenant de l'air ambiant équivaut en fait à une utilisation indirecte de l'énergie solaire. Le potentiel est donc au moins aussi élevé que celui de l'énergie solaire dans l'espace construit (cf. également [22]), qui est supérieur à 300PJ/a.

En tout, plus de 469 PJ/a de chaleur ambiante sont donc à disposition, ce qui correspond à plus de 1'800PJ de chaleur utile. Or pour chauffer toute la Suisse, il « suffit » de 240 PJ/a. Il existe donc assez de chaleur ambiante pour chauffer plusieurs fois la Suisse toute entière!

3.2. Potentiel technique

Le potentiel technique correspond à la partie du potentiel théorique qui dépend de l'état actuel de la technique, tout en tenant compte du cadre juridique en vigueur (p. ex. dispositions relatives à la protection des monuments et de la nature). Tant l'état de la technique que la situation juridique sont des variables susceptibles d'évoluer au fil du temps.

Pour les besoins en chaleur utile, nous nous basons sur [1] et [2]. Nous considérons que d'un point de vue technique, les pompes à chaleur peuvent remplacer pratiquement tous les systèmes de chauffage existants. Seule limitation, les grandes centrales de chauffage avec des températures de départ supérieures à 65°C. Selon une étude de l'EPFL [23], du point de vue purement technique, environ 80% des chauffages existants pourraient fonctionner avec des pompes à chaleur. On prévoit à l'horizon 2008-2010 l'arrivée d'une nouvelle génération de pompes à chaleur avec le CO₂ comme fluide frigorigène, qui permettront des températures de départ

comprises entre 70°C et 90°C. Une autre technologie connue de PAC connaît actuellement un regain d'intérêt: la PAC à gaz naturel (à moteur à gaz ou à absorption), dont les températures de départ sont habituellement également comprises entre 70°C et 90°C. La plupart des produits se situent dans la classe de performance allant de 30 à 100kW_{th}, qui est très importante, autant dans les nouvelles constructions que sur le marché de l'assainissement (petits immeubles, cf. [8]). Ainsi, le potentiel de mise en œuvre technique des pompes à chaleur augmentera sensiblement à partir de 2006-2008.

Selon [1], chap. 6.1, page 28, la consommation d'énergie des combustibles fossiles pour le chauffage (des bâtiments) et la production d'eau chaude dans les immeubles d'habitation et de bureaux se chiffre à 223.670 + 67.413 = 291.083 PJ/a. Selon [19], page 27 et [20], page 16, la consommation de chaleur utile pour le chauffage des bâtiments et la production d'eau chaude se monte à 198.8PJ/a pour les ménages et à 65.0PJ/a pour les services et l'agriculture, soit un total de 263.8PJ/a.

Nous supposons que 80% sont utilisés pour le chauffage et la production d'eau chaude (c'est-à-dire maximum 80°C, pas de production de vapeur, pas de chaleur industrielle) et obtenons 233PJ/a et 211PJ/a. Le résultat est plausible: dans [3], on estime le chauffage des bâtiments à 222PJ/a.

Conclusion: le potentiel de chaleur utile (chauffage et eau chaude) pour les pompes à chaleur se monte à 220PJ/a.

3.3. Potentiel économique

Le potentiel économique est la partie du potentiel technique qui est intéressante compte tenu des conditions économiques actuelles. Le présent document ne contient pas de travail approfondi de prévision mais part simplement du principe que les prix de l'énergie ne se modifieront pas de manière conséquente, c'est-à-dire que 100 kg de mazout coûtent entre 50 et 70 CHF et que le centime climatique et/ou une faible taxe sur le CO₂ n'auront pas d'influence notoire sur les prix.

Le marché de la chaleur est un marché de substitution: si la branche produit/vend/installe davantage de pompes à chaleur, elle produit/vend/installe moins de chaudières à gaz ou mazout. La croissance maximale possible est limitée par des données structurelles comme les capacités de production. Les capacités existantes, qui permettent d'installer 40'000 à 50'000 chaudières par an, peuvent être rapidement et à peu de frais affectées aux pompes à chaleur (selon les statistiques de l'association des fournisseurs de matériel de chauffage Procal).

On part du principe que les prix des installations de pompes à chaleur dans les segments assainissements du chauffage et grandes installations connaîtront une évolution similaire à celle des pompes à chaleur de moins de 50 kW_{th} dans les nouvelles constructions au cours des dernières années. Les baisses de prix qui résultent

de l'augmentation du nombre d'unités se poursuivront selon la même évolution qu'entre 1993 et 2005, et permettront ainsi de gagner de nouvelles parts de marché.

On part également du principe que les progrès techniques selon chapitre 6, partie sur le COPA, permettront eux aussi de conquérir des parts de marché supplémentaires.

Quelle est donc l'ampleur du potentiel économique? Pour répondre à cette question, appuyons-nous sur une valeur empirique des statistiques concernant les pompes à chaleur: la part moyenne de marché des pompes à chaleur dans les nouvelles constructions avec une puissance thermique de moins de 20kW a augmenté de 20% en 1992 à 61% en 2004. Au niveau local, elle peut atteindre jusqu'à 80%. A condition que l'évolution technique et économique connaisse un développement similaire, on peut donc admettre que le potentiel économique représente 75% du potentiel technique, soit 165PJ/a.

3.4. Potentiel réalisable

Le potentiel réalisable est la partie du potentiel économique qui peut être mise en œuvre dans un avenir pas trop lointain.

Les conclusions sont difficiles en raison des nombreux paramètres et hypothèses. Nous reprenons les chiffres des feuilles de route élaborées par la CORE [10].

Tout en PJ/a	2010	2025	2050	2050
Tout en 13/a	2010	2023	[10]	Sep 05
Chaleur utile des PAC pour chauffage des bâtiments	8.88	36.06	77.15	51.90
Chaleur utile des PAC pour pro- duction d'eau chaude	5.57	9.27	12.75	10.70
Total chaleur utile	14.45	45.33	89.90	62.60

Tableau 3: potentiel de chaleur utile provenant de la chaleur ambiante selon la CORE

Pour l'année 2050, nous disposons de deux variantes : d'abors les chiffres publiés en 2004 puis ceux de septembre 2005. Au cours des débats au sein de la CORE, les chiffres ont fortement varié dans le sens d'une répartition différente des parts énergétiques. Ce changement n'a donc rien à voir avec une baisse du potentiel des pompes à chaleur.

Pour rendre les chiffres précédents plus concrets, nous avons extrapolé dans l'annexe 10.1 le nombre de pompes à chaleur jusqu'en 2050. Le modèle de calcul provient de [2], partie statistiques pompes à chaleur. Il repose sur des hypothèses expliquées dans l'annexe. Le paramètre d'entrée principal est la croissance annuelle du marché. Elle est admise dans des limites démontrées par l'expérience. Au fil du

temps, elle tend vers zéro qui correspond à une saturation du marché. De plus, on admet que le nombre annuel de pompes à chaleur ne dépasse pas 80% au maximum de l'ensemble du marché annuel du chauffage.

Selon nos hypothèses plutôt prudentes, le potentiel réalisable sera de 90PJ en 2035. Il correspond à un ordre de grandeur compris entre 500'000 et 600'000 installations.

3.5. Mise à disposition de l'électricité d'entraînement pour le potentiel réalisable

Pour exploiter le potentiel réalisable d'une chaleur utile de 90 PJ/a, il faut entre 18 et 22PJ/a de courant, en fonction de l'échéance et de l'efficacité moyenne des pompes à chaleur (COPA). Pour rester conservateur, nous nous basons ci-après sur un COPA moyen de 4,0, qui correspond à 22PJ/a d'électricité d'entraînement et 68PJ/a de chaleur ambiante. Le nombre d'unités correspondantes figure à l'annexe 10.1.

Nous examinons deux variantes extrêmes pour la mise à disposition de l'électricité d'entraînement.

a) Sans la construction de nouvelles installations de production d'électricité

Il est possible de libérer du courant par des mesures visant à augmenter l'efficacité dans le secteur du chauffage, sans construire de nouvelles installations de production d'électricité. Cette stratégie est décrite en détail dans [13]. L'accent est mis sur les deux mesures suivantes:

- remplacement des chauffages électriques à résistances par des pompes à chaleur (chiffres issus de [11]);
- remplacement des chaudières à gaz ou mazout par des installations à CCF avec des puissances inférieures à 1'000 kW_{el} (chiffres issus de [12]). Hypothèses: rendement électrique de 35%, rendement thermique de 50%, pertes en ligne de 2,5% et respect de l'OPair92, plus stricte (valeurs NOx!).

En ce qui concerne la première mesure, le potentiel réalisable doit faire l'objet d'une estimation. Du point de vue technique, chaque chauffage électrique peut être remplacé par une pompe à chaleur, mais pas toujours du point de vue économique. Nous admettons que la moitié du potentiel de remplacement est réalisable, ce qui correspond environ à la proportion des chauffages à accumulation sur l'ensemble des chauffages électriques selon [24].

En ce qui concerne le CCF, la mesure présentée est d'ores et déjà uniquement un potentiel réalisable. Le potentiel technique serait 3 fois supérieur. La question de l'intégration du CCF au réseau électrique existant – surtout dans les nombreuses installations décentralisées – a été laissée de côté comme il s'agit uniquement de l'analyse de potentiels.

	2050		2010	
	Courant	Courant	Courant	Courant
	libéré	libéré	libéré	libéré
	GWh/a	PJ/a	GWh/a	PJ/a
Remplacement chauf-	1′500	5.4	500	1.8
fages électriques				
Remplacement chau-	13'000	46.8	2′500	9.0
dières par CCF				
TOTAL courant libéré	14'500	52.2	3′000	10.8
Besoins courant PAC	6′100	22.0	1′276	4.6
BILAN ("-" signifie excédent de cou- rant)	-8′400	- 39.6	- 1724	- 6.2

Tableau 4: courant libéré pour le fonctionnement des PAC par le remplacement des chauffages électriques existants et des chaudières existantes par le CCF, besoins en courant des PAC et bilan. Chiffres issus de [12] et [11].

Il est donc possible de libérer plus de courant que nécessaire pour exploiter le potentiel de chaleur utile calculé sous 3.4 au moyen des pompes à chaleur, sans qu'il ne soit nécessaire de construire des installations supplémentaires de production d'électricité.

Pour la chaleur utile souhaitée, mentionnée précédemment, de 90PJ/a, nous obtenons les chiffres suivants:

- 80'000 pompes à chaleur remplacent 80'000 chauffages électriques. Au lieu de 5,4PJ/a, elles n'utilisent que 1,4PJ/a d'électricité. Elles produisent 5PJ/a de chaleur utile (il s'agit d'installations de faible puissance). 4,0PJ/a d'électricité sont libérés pour alimenter d'autres pompes à chaleur;
- 90'000 pompes à chaleur remplacent des chaudières et produisent 16PJ/a de chaleur utile en utilisant les 4,0PJ/a d'électricité libérés ci-dessus;

Avec 90 moins 21, il reste 69PJ/a de chaleur utile à produire avec des pompes à chaleur et le CCF.

- 220'000 pompes à chaleur remplacent des chaudières et produisent 49PJ/a de chaleur utile; elles consomment 12PJ/a d'électricité d'entraînement;
- 90'000 installations à CCF remplacent des chaudières et produisent 12PJ/a de courant et 20PJ/a de chaleur utile à partir de 36PJ/a de combustibles.

Un total de 390'000 pompes à chaleur est donc nécessaire. L'évolution du parc de chauffage est illustrée dans le graphique ci-après.

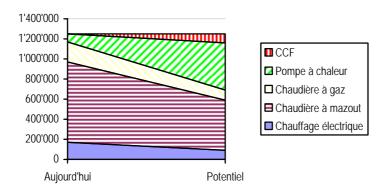


Fig. 6: répartition des chauffages en Suisse aujourd'hui (2005) et potentiel si les PAC et le CCF remplacent les chauffages électriques et les chaudières.

b) Avec la construction de nouvelles installations de production d'électricité

Des centrales à cycle combiné (CCC) permettent de générer l'électricité. Fonctionnant souvent au gaz, elles allient une turbine à gaz avec une chaudière utilisant les rejets thermiques et une turbine à vapeur, et peu ou pas la chaleur. De par leur taille, il s'agit plutôt de grandes installations centralisées avec une puissance électrique comprise entre 5 et 400 MW. Les deux mesures sont les suivantes:

- remplacement des chauffages électriques à résistances par des pompes à chaleur (chiffres issus de [11]);
- installation de centrales à cycle combiné sans utilisation de chaleur, avec rendement électrique de 58% et pertes en ligne de 7,5%.

Il faut noter que, pour des raisons techniques et économiques, les centrales à cycle combiné fonctionnent environ 3 fois plus longtemps que les pompes à chaleur pour le chauffage (en moyenne annuelle 5'000 heures au lieu de 1'700).

- 80'000 pompes à chaleur remplacent 80'000 chauffages électriques. Au lieu de 5,4PJ/a, elles n'ont besoin que de 1,4PJ/a d'électricité. Elles produisent 5PJ/a de chaleur utile (il s'agit plutôt d'installations de faible performance). 4,0PJ/a d'électricité sont libérés pour alimenter d'autres pompes à chaleur;
- 90'000 pompes à chaleur remplacent des chaudières, elles produisent 16PJ/a de chaleur utile à partir des 4,0PJ/a de courant libéré ci-dessus;

Avec 90 moins 21, il reste 69PJ/a de chaleur utile à produire avec des pompes à chaleur et des centrales à cycle combiné.

- 310'000 pompes à chaleur remplacent des chaudières, surtout à mazout, et produisent 69PJ/a de chaleur utile;
- 1 centrale à cycle combiné sans utilisation de chaleur de 300MW_{el} environ consomme 33PJ/a de combustible et génère 18PJ/a d'électricité d'entraînement pour les pompes à chaleur.

En tout, ce sont donc 480'000 pompes à chaleur qui sont nécessaires. L'évolution du parc de chauffage est illustrée dans le graphique ci-après.

Fig. 7: répartition des chauffages en Suisse aujourd'hui (2005) et potentiel si des PAC alimentées par du courant provenant de centrales à cycle combiné (CCC) remplacent les chauffages électriques et les chaudières.

Il va de soi que les variantes a) et b) peuvent être combinées.

4. Potentiel de réduction maximale des émissions de CO,

En Suisse, l'énergie nécessaire pour chauffer les locaux et produire de l'eau chaude est fournie principalement par les chaudières.

Fig. 8: Flux d'énergie de chaudières à combustible fossile

Cette technologie, arrivée à maturité, a atteint ses limites physiques. Il n'est pas possible de diminuer encore de 10% les émissions de CO₂. Est considérée comme limite du système l'installation de production d'énergie avec tous les auxiliaires sur une année de fonctionnement.

La combinaison de pompes à chaleur (PAC) et d'installations à couplage chaleurforce (CCF) ou de centrales à cycle combiné (CCC p. ex. avec turbine à gaz et vapeur (TAG-TAV) sans utilisation de chaleur) utilise le combustible de manière bien plus efficace.

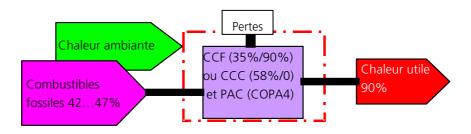


Fig. 9: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: l'ensemble du courant alimente les pompes à chaleur.

L'utilisation de combustibles fossiles et les émissions qui en découlent sont diminuées de plus de moitié, puisqu'elles sont réduites d'un facteur de 2,1 à 2,4.

La combinaison avec la centrale à cycle combiné est la plus performante, en raison de son efficacité électrique supérieure. De plus, cette solution induit beaucoup moins d'émissions de NOx que le couplage chaleur-force décentralisé, qui repose surtout sur des moteurs.

Nous utilisons les valeurs tirées de l'étude [9], qui contient des analyses du cycle de vie basées sur les données Ecoinvent 2000. Ainsi, toutes les énergies grises sont également prises en compte, particulièrement l'équivalent CO₂ provenant des pertes de fluide frigorigène par les pompes à chaleur.

Nous utilisons les chiffres selon l'état de la technique comme suit: les pompes à chaleur fonctionnent en moyenne avec un coefficient de performance annuel de 4,0, les installations à CCF atteignent en moyenne des rendements de 35% el et de 55% h. Les chaudières modernes produisent entre 260 g(équiv. CO₂)/kWh (gaz, à condensation) et 350 g(équiv. CO₂)/kWh (mazout) ([9], page 10). En 2000, le parc de chaudières était composé de 814'827 chaudières à mazout et de 200'187 chaudières à gaz (tiré de [8]). Leur moyenne d'émissions se monte à 330 g(équiv. CO₂)/kWh. Les chiffres sont arrondis pour plus de clarté. Pour la solution CCF, on part du principe que les installations à CCF remplissent les dispositions plus sévères de l'OPair92, et pas celles, moins strictes, de l'OPair98 pour les émissions de NOx. Détails des calculs à l'annexe 10.4.

Sur la base de [13], l'OFEN définit la stratégie de fourniture de l'électricité entraînant les pompes à chaleur en développant les trois scénarios suivants:

- L'électricité est rendue disponible par la substitution des chauffages électriques à résistances par les pompes à chaleur et celle des chaudières par le CCF. Lorsque des pompes à chaleur remplacent des chauffages électriques à résistances, le courant libéré ne génère pas de CO₂ supplémentaire. Indépendamment de la manière dont ce courant est produit, grâce à la pompe à chaleur, chaque chauffage électrique à résistances remplacé libère du courant pour 3 pompes à chaleur supplémentaires. Pour déterminer précisément la réduction, il faut répartir les émissions de la chaudière remplacée sur l'ensemble de la chaleur utile (chaudière+chauffage électrique). Nous obtenons donc une réduction des émissions spécifiques de (COPA 1) / COPA soit 0.75. La réduction de CO₂ se monte à 240 g(équiv. CO₂)/kWh.
- Le courant provenant de CCF efficaces avec pleine utilisation de la chaleur produit environ 150g(équiv. CO₂)/kWh ([9], page 11). La réduction de CO₂ se monte ainsi à 170 g(équiv. CO₂)/kWh.
- Le courant est produit par des centrales à cycle combiné (CCC) modernes. Les centrales avec turbines à gaz et à vapeur (TAG-TAV) joueront un rôle important. La réduction de CO₂ est le résultat de la différence entre: les émissions de CO₂, si la chaleur utile était produite par des chaudières à combustible fossile plutôt que par des pompes à chaleur, et les émissions de CO₂ par la production de courant fossile en supposant que la chaleur produite dans la centrale ne puisse pas du tout être utilisée. Avec du courant issu de centrales à cycle combiné (CCC), les pompes à chaleur émettent environ 125 g(équiv. CO₂)/kWh ([9], page 11). La réduction de CO₂ est donc de 195 g(équiv. CO₂)/kWh.

Selon la composition de l'électricité entraînant les pompes à chaleur, la réduction de CO₂ varie entre 170 et 240 g(équiv. CO₂)/kWh. Pour calculer un ordre de grandeur, nous prenons une moyenne de 200 g(équiv. CO₂)/kWh.

Nous obtenons alors, pour le au potentiel réalisable de 90PJ/a:

Potentiel	Energie envi-	Chaleur utile	Réduction de CO ₂ en t
	ronnante		et en % des émissions
			des combustibles
2010	2'724	4'000	800'000 t ou 3%
	GWh/a	GWh/a	
2050	68PJ/a ou	90PJ/a ou	5'000'000 t ou 21%
	19'000	25'000	
	GWh/a	GWh/a	

Tableau 5: potentiel réalisable de réduction des émissions de CO₂ provenant des combustibles avec des pompes à chaleur et une électricité provenant de la substitution de chauffages électriques, du CCF et de centrales à cycle combiné (CCC). Le total des émissions se monte à 40,8 mio t, dont 24,3 mio t provenant des combustibles, selon l'inventaire CO₂ de l'OFEFP [1].

Le potentiel de réduction des émissions de CO₂ se monte à 5 millions de tonnes, soit 21% des émissions provenant des chaudières.

5. Potentiel de la production d'électricité fossile avec une réduction de 0% à 10% du CO₂

Selon 4, il est possible de réduire de moitié les émissions de CO₂. Une option consiste à consacrer, voire «sacrifier», tout ou partie des émissions de CO₂ éliminées des chaudières à la production d'électricité fossile. Cette idée a déjà été formulée dans [17]. Deux exemples sont analysés ci-après:

- une réduction de 10% du CO₂ permet de produire entre 21 et 26PJ/a d'électricité fossile;
- une réduction nulle du CO₂ permet de produire entre 25 et 31 PJ/a d'électricité fossile.

Pour illustrer cette idée, nous prenons les chiffres potentiels du chapitre 3.4: l'objectif est de produire 90PJ/a de chaleur utile avec un maximum de 72 PJ/a provenant de la chaleur ambiante.

Nous utilisons les chiffres selon l'état de la technique comme suit: les pompes à chaleur fonctionnent en moyenne avec un coefficient de performance annuel de 4,0, les installa-

tions à CCF atteignent en moyenne des rendements de $35\%_{el}$ et de $55\%_{th}$, les centrales à cycle combiné un rendement électrique de 58%; les pertes en ligne sont respectivement de 2,5% (CCF) et 7,5% (CCC).

Pour plus de clarté, les chiffres calculés sont à nouveau arrondis. Pour la solution CCF, on pose également que les installations à CCF remplissent les dispositions plus sévères de l'OPair92, et pas celles, moins strictes, de l'OPair98 pour les émissions de NOx. Détails des calculs à l'annexe 10.4.

5.1. Potentiel de la production d'électricité fossile avec une réduction de 10% des émissions de CO₂

La combinaison de pompes à chaleur et d'installations à couplage chaleur-force permet de produire du courant fossile tout en diminuant les émissions de $\rm CO_2$. Il est possible de générer entre 21 et 26% d'électricité avec une réduction de 10% des polluants et des combustibles.

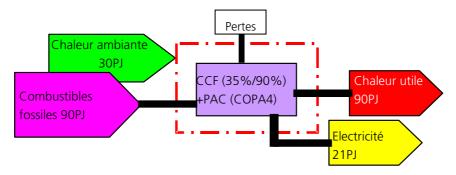


Fig. 10: Flux d'énergie de la combinaison de pompes à chaleur et d'installations à couplage chaleur-force: 33% du courant alimente les pompes à chaleur.

Grâce à la production de chaleur par le CCF, la chaleur qui doit être produite par la PAC diminue, et, partant, la chaleur ambiante utilisée.

L'utilisation de centrales à cycle combiné (CCC) permet de produire légèrement plus de courant, même sans utilisation de la chaleur. Par ailleurs, les polluants (surtout NOx) sont plus modérés.

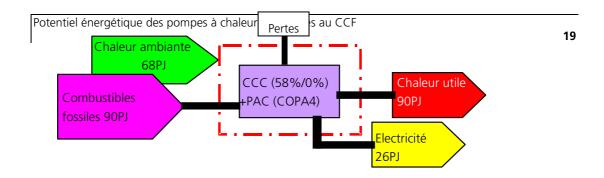


Fig. 11: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: 47% du courant alimente les pompes à chaleur.

Il est possible de produire entre 21 et 26 PJ/a ou entre 5,8 et 7,2 TWh/a de courant avec 10% de combustibles fossiles en moins qu'aujourd'hui, des valeurs qui correspondent à 10 à 13% de la consommation nationale d'électricité en 2004.

5.2. Potentiel de production d'électricité fossile avec stagnation des émissions de CO₂

La combinaison de pompes à chaleur et d'installations à couplage chaleur-force permet de produire du courant fossile sans augmenter les émissions de $\rm CO_2$. En utilisant la même quantité de combustibles et de chaleur utile que les chaudières, il est possible de produire de 25% à 31% de courant fossile sans émissions de $\rm CO_2$.

Pour illustrer ces pourcentages, nous prenons les chiffres potentiels du chapitre 3.4: là encore, l'objectif est de produire 90 PJ/a de chaleur utile avec 100PJ/a de combustible et un maximum de 72 PJ/a provenant de la chaleur ambiante. La production de courant est maximisée. Détails des calculs à l'annexe 10.4.

Notre hypothèse se fonde sur les chiffres suivants: les pompes à chaleur fonctionnent en moyenne avec un coefficient de performance annuel de 4,0, les installations à CCF atteignent en moyenne des rendements de 35%el et de 55%th, les centrales à cycle combiné un rendement électrique de 58%; les pertes en ligne se montent respectivement à 2,5% (CCF) et 7,5% (CCC). Pour plus de clarté, les chiffres sont à nouveau arrondis. Pour la solution CCF, on pose également que les installations à CCF remplissent les dispositions plus sévères de l'OPair92, et pas celles, moins strictes, de l'OPair98 pour les émissions de NOx.

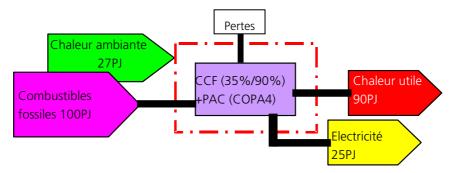


Fig. 12: Flux d'énergie de la combinaison de pompes à chaleur et d'installations à couplage chaleur-force: 33% du courant alimente les pompes à chaleur.

Grâce à la production de chaleur par le CCF, la chaleur qui doit être produite par la PAC diminue, et donc la chaleur ambiante utilisée.

L'utilisation de centrales à cycle combiné sans utilisation de la chaleur (CCC) permet de produire légèrement plus de courant:

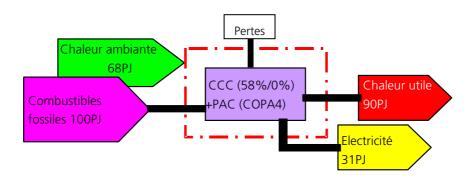


Fig. 13: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: 47% du courant alimente les pompes à chaleur.

Il est possible de produire entre 25 et 31 PJ/a ou entre 6,9 et 8,6 TWh/a de courant avec la même quantité de combustibles fossiles qu'aujourd'hui, des valeurs qui correspondent à 12 à 15% de la consommation nationale d'électricité en 2004.

6. Commentaires/Explications relatives aux hypothèses

Durée de vie des pompes à chaleur

La durée de vie des pompes à chaleur prise en compte dans les statistiques est de 15 ans. C'est la durée de vie estimée par la SIA, également utilisée par les banques pour le calcul de l'amortissement ou l'hypothèque. En fait, les expériences réalisées dans la branche et l'analyse sur le terrain des installations de PAC de l'OFEN montrent que la durée de vie réelle des nouvelles installations est plutôt de 20 ans à l'heure actuelle. Les installations plus anciennes atteindront sans doute en moyenne une durée de vie de 15 ans, une durée qui croîtra au fil du temps: de 25 ans pour toutes les installations en 2020.

• Temps de fonctionnement

Le temps de fonctionnement moyen à la fin 2003 est exactement de 1'682h/an. Calcul: chaleur produite divisée par la puissance thermique. Il s'agit d'heures à pleine puissance. A l'avenir, deux tendances influeront sur ce chiffre. D'une part le raccourcissement de la saison de chauffage grâce à la meilleure isolation thermique des bâtiments, et d'autre part le rallongement de la durée de fonctionnement des installations, car les PAC assument de plus en plus également la production d'eau chaude sanitaire. Ce deuxième facteur est d'autant plus pertinent que le plus gros potentiel de marché pour les PAC est celui de l'assainissement des chauffages existants, surtout les chauffages à mazout. Les deux tendances devraient plus ou moins s'équilibrer, si bien que la moyenne d'heures à pleine puissance devrait s'établir aux alentours de 1'700h/an.

Puissance moyenne

Fin 2003, la puissance thermique moyenne des pompes à chaleur était d'environ $16kW_{th}$. Sur le plan des quantités, ce sont les installations de moins de 20kW de puissance thermique qui dominent, même si quelques installations très importantes les compensent facilement: du point de vue arithmétique, une installation de 500kW équivaut à 100 petites PAC dans des bâtiments Minergie! En 1990, la puissance thermique moyenne des pompes à chaleur était de $24 kW_{th}$. Entre 1980 et 2003, la répartition des ventes en fonction des puissances a nettement évolué:

Ventes	< 20kW	20-50kW	50-100kW	>100kW
1980	2531	398	128	183
2003	8130	416	90	41

Tableau 6: ventes en 1980 et en 2003, par catégorie de puissance.

A l'époque, ce sont surtout des installations de moyenne ou grande taille qui ont été construites, ce qui pourrait redevenir le cas.

A l'avenir, les deux segments de marché les plus prometteurs sont: l'assainissement des chauffages (généralement, puissance thermique plus élevée que dans des nouveaux bâtiments de catégorie similaire) et les grandes installations. Toutefois, la meilleure isolation thermique des bâtiments diminue la puissance thermique moyenne. Il est donc difficile de faire des prévisions chiffrées.

Dans l'annexe 8, nous avons calculé, à partir des valeurs de [8], une puissance moyenne des chaudières existantes de 35 kW $_{\rm th}$ environ (il s'agit de la puissance thermique moyenne, pas de la performance moyenne des chaudières). Pour notre extrapolation, nous nous basons donc dans l'annexe 8 sur une moyenne de 25kW $_{\rm th}$ à partir de 2030 pour les PAC.

Coûts

L'étude de l'OFEN sur la veille technologique [16] a fourni des données fiables. En 2003, une pompe à chaleur coûtait environ CHF 1'600.- / kW_{th} (pompe à chaleur air-eau, seulement production de chaleur, pas de diffusion de la chaleur). En l'espace de 10 ans, les coûts ont presque diminué de moitié, et les effets d'échelle devraient permettre de les réduire à nouveau de moitié.

Explication: les fabricants de pompes à chaleur sont à la fois acheteurs et monteurs de composants. Or ces derniers sont fabriqués par des multinationales (Copeland, Danfos...), qui ne fabriquent des composants pour PAC que si le marché est suffisamment grand. C'est ce qui s'est passé en 2004 lorsque le fabricant de compresseurs Copeland a introduit sur le marché une nouvelle série de compresseurs pour les PAC. Les prix des composants diminuent alors de manière radicale. Mais le seuil de départ est élevé: pour ce genre d'entreprises, 10'000 pièces constituent une présérie, et un segment de marché commence à partir de 50'000 pièces par an. Si le marché des PAC devient assez important au niveau européen, les composants seront proposés à des prix très avantageux. Ensuite, les fabricants de PAC pourront faire intervenir des chaînes de montages automatisées. Ce genre d'investissements ne sont rentables qu'à partir de 30'000 à 50'000 pièces par an (cf. le rapport final sur le projet de l'OFEN «Swiss Retrofit Heat Pump SRHP»).

Parts de marché, situation sur le marché

Le nombre potentiel de pompes à chaleur est plausible: la demande de chauffages se tournera vers les pompes à chaleur au détriment des chaudières, .

En 2003, 42'939 chauffages ont été installés, dont 32'460 chaudières et 8'732 pompes à chaleur. Nous nous basons donc sur un marché de 50'000 chauffages par an.

• Coefficient de performance annuel (COPA)

A l'heure actuelle, le COPA moyen du parc d'installations suisse atteint tout juste 3,0. Cette valeur a été calculée dans [5]. Le COPA moyen pour les installations actuellement aménagées dans de nouvelles constructions atteint 3,5. Dans le concept 2004-2007 élaboré par le domaine chaleur ambiante pour la CORE, les valeurs suivantes ont été adoptées (extrait):

	Système principal	Composants	Applications	Infrastructure	Conditions cadres
2004-07	COPA sur le terrain: A/E=3.0 (assainissement: 2.7) S/E=4.0 (assainissement: 3.0) E/E=4.5 (assainissement: 3.3) (production combinée de chaud/froid)	Composants écolo- giques (NH ₃ , CO ₂) avec COPA identi- que Sondes géothermi- ques avec CO2 (vaporisation directe)	<50 kW: accent sur l'assainissement, surtout chauffages électriques à résistances existants >50 kW: exploitation combinée chaud/froid avec rendement global de 25% supérieur Optimisation des installations de froid dans les entreprises artisanales	Utilisation accrue des PAC dans les rénovations de maisons	Libéralisation mar- ché él. (+) Prix (-) avec des prix du mazout/gaz plus élevés, les PAC seraient encore mieux acceptées (cf. Suède)
2008-19	Rendement exergé- tique > 80 % -> COPA maximum atteint d'ici 2015 sur le terrain càd. A/E= 5 S/E= 6 E/E= 8	Nouveaux compres- seurs Combinaison PAC / chaleur en hiver	Intégration architecturale optimale des PAC Exploitation de l'air évacué comme source de chaleur 20% de part de marché pour les rénovations y c. remplacement des premières PAC	Des CCF efficaces produisent de l'électricité pour des PAC décentralisées, càd environ 20 TAG- TAV env. 5'000 SwissMo- tor et env. 10'000 piles à combustible Concentration des fabricants dans le monde, plus que 2 en CH	Taxe sur le CO ₂ Les chauffages à gaz et à mazout sont vus d'un mauvais oeil
2020-29	puissance ECS / puissance chauffage 1:1	Systèmes de stoc- kage saisonniers / PAC / thermie so- laire	Programme R&D fortement financé par l'industrie Vague de démoli- tions des anciennes constructions	Biocombustibles dans CCF	Prix du pétrole > 50\$ le baril (+)
Après 2030	Micro PAC intégrées au mur avec vapori- sation et condensa- tion directes	Compresseurs sans huile, fluides frigori- gènes écologiques NH3 et CO2	R&D exclusivement financée par l'industrie Seuls NH3 et CO2 sont encore admis	L'électricité provient de l'énergie hydrau- lique et du CCF	Le mazout ne sert plus au chauffage, les PAC sont la règle

Tableau 7: objectifs atteints et visés, extrait du concept 2004-2007 élaboré par le domaine chaleur ambiante, CCF, froid, adopté par la CORE le 10.9.2004 (tableau reformaté, mais contenu inchangé).

Abréviations: A: air, S: sol, E: eau

Pour ce qui est du COPA potentiel, on peut donc prévoir, sur l'ensemble des installations, un COPA moyen de 4,0 d'ici 2020. Les installations plus récentes, plus efficaces, poussent ce chiffre à la hausse, mais le nombre de nouvelles installations reste inférieur à celui des installations existantes. C'est pourquoi la moyenne de toutes les installations ne s'améliore que lentement. A long terme (2050), on devrait pouvoir tabler sur un COPA de 5,0.

• Chiffres de consommation d'électricité

Ce sont surtout des pompes à chaleur électriques qui seront installées. L'évolution la plus récente tend également dans cette direction, notamment avec les pompes à chaleur à effet magnétocalorique. Nous souhaitons ci-après rappeler quelques chiffres pour la consommation d'électricité, qui sont tirés de [2], [14] et [18]:

	TWh/a	En % de la
	I VVII/a	
		consommation
		2003 de la CH
Consommation de toutes les PAC 2000	0.61	1.1
Consommation de toutes les PAC 2003	0.69	1.2
Consommation de toutes les PAC 2004	0.70	1.2
Consommation potentielle de toutes les PAC 2010	1.22	2.2
Consommation potentielle de toutes les PAC 2050	5.0	10.0
Consommation chauffages électriques	3.0	5.5
Consommation brûleurs à gaz/mazout	0.6	1.1
Consommation installations de froid	5.5	9.1
(climatisation, refroidissement)		
Consommation appareils ménagers	7.1	12.9
Réfrigérateurs et congélateurs	2.5	4.5
Lave-vaisselle	0.4	0.7
Machines à laver	0.6	1.1
Sèche-linge	0.4	0.7
Machines à café	0.4	0.7
Consommation pour éclairage	5.8	10.5
Consommation pour bureau, communications	1.5	2.7
Consommation électronique de loisirs	1.2	2.2

Tableau 8: consommation d'électricité dans certaines catégories, selon [2] et [18].

Les pompes à chaleur utilisent relativement peu d'électricité: fin 2003, elles consommaient à peu près autant que les machines à laver. Fin 2050, les PAC consommeront environ les 2/3 de la consommation de tous les appareils ménagers, si le potentiel est entièrement exploité. L'augmentation de la consommation causée par la mise en service de nouvelles pompes à chaleur peut en grande partie être compensée par le remplacement des chauffages électriques. A terme, il est possible d'augmenter l'efficacité des appareils ménagers et des installations de froid de 25% environ en moyenne.

7. Références

- [1] Objectifs du programme SuisseEnergie, objectifs sectoriels et contributions cibles 2001 et 2002, OFEN, Berne, février 2004
 - Données de SuisseEnergie selon [1], chap. 6.1 page 28, chap. 3.4, page 12 et chap. 3.3, page 11:
 La consommation d'énergie des combustibles fossiles pour le chauffage et la production d'eau chaude dans les immeubles d'habitation et de bureaux se monte au total à 223'670 + 67'413 = 291'083 TJ
 Ojbectif SuisseEnergie pour combustibles, total: 50'503 TJ
 Objectif SuisseEnergie pour combustibles, contribution cible nécessaire des énergies renouvelables: 10'800 TJ
- [2] Statistique globale suisse de l'énergie 2002, OFEN, Berne, août 2003, BBL 805.006.02
- [3] Steps toward a sustainable development, A white book for R&D of energy-efficient technologies, Novatlantis, E. Jochem (Editor), CEPE ETH, Zurich, mars 2004
- [4] Konzept Umbegungswärme, WKK, Kälte 2004-2007, verabschiedet durch die CORE am 10.9.2004
- [5] M. Ehrbar, M. Erb, P. Hubacher, analyse in situ d'installations de PAC (ANIS) 1996-2003, rapport final, avril 2004, ENET 240016
- [6] Das Potenzial von Wärmepumpen-Heizungen im Falle eines Erdoel-Lieferstoppes, OFEN, Berne, juillet 1983 (document de travail interne, 1 seul exemplaire subsiste dans les archives)
- [7] F. Rognon, Förderung der erneuerbaren Energien durch das Bundesamt für Energie: Ziele für Wärmepumpen und Umfeld für grosse Wärmepumpen, im Tagungsband der 9. UAW-Tagung vom 2002, ENET-Nr. 220358
- [8] Office fédéral de la statistique, recensement de la population 2000, chiffres-clés sur les bâtiments et les logements, sous http://www.bfs.admin.ch/bfs/portal/fr/index/themen/bau-_und_wohnungswesen.html. Cf. annexe 10.3
- [9] Projekt GaBE: Ganzheitliche Betrachtung von Energiesystemen, Perspektiven der zukünftigen Strom- & Wärmeversorgung für die Schweiz, PSI, Villigen, août 2001
- [10] Road Map für die erneuerbaren Energien in der Schweiz bis 2050, SATW, Berne, novembre 2004
- [11] R. Rigassi, HP. Eicher, Zukünftige Marktbedeutung von WKK- Anlagen (1-1'000kW_a), OFEN, Berne, 2003
- [12] Ueberprüfung der Erhebung der Widerstandsheizungen, OFEN, section Statistique, note du 8.9.2003

- [13] Le couplage chaleur-force dans le programme SuisseEnergie, OFEN, août 2003 (Dok.-ID 003692950)
- [14] J. Nipkow, Stand-by-Verbrauch von Haushaltgeräten, OFEN, Berne, juin 2003
- [15] Erneuerbare Energien in der Region Hegau/Bodensee, Solarcomplex, Hilzingen (D), janvier 2002
- [16] HP. Eicher, W. Ott, R. Rigassi, Technologie-Monitoring, Schlussbericht, OFEN, octobre 2003
- [17] Martin Zogg, Wärme und Strom aus Brennstoffen effizient und umweltschonend, OFEN, mai 2002
- [18] P. Hofer et al., Die Entwicklung des Elektrizitätsverbrauches serienmässig hergestellter Elektrogeräte in der Schweiz, Prognos AG, OFEN, Berne, décembre 2002
- [19] Energieperspektiven 2053/2050, Der Energieverbrauch der privaten Haushalte, P. Hofer, Prognos AG, OFEN, avril 2005
- [20] Energieperspektiven 2053/2050, Energieverbrauch der Dienstleistung und der Landwirtschaft, CEPE, OFEN, avril 2005
- [21] Das Potenzial von Wärmepumpen-Heizungen im Fall eines Erdöl-Lieferstoppes, OFEN, Berne, juillet 1983
- [22] IEA PVPS, Task 7 Potential of building integrated PV Systems, IEA, 2002
- [23] D. Favrat, G. Sarlos et al., Projet PACLAC, Valorisation de l'énergie thermique des lacs pour le chauffage urbain, Rapport final, NEFF, mars 1995
- [24] M. Strebel, W. Seidinger, Heizkörperwärmepumpe, Zusammenfassung bisher erarbeiteter Informationen und Grundlagen zur Förderstrategie, OFEN, Berne, août 1997

8. Liste des abréviations

a, /a	an, par an
A/E	air/eau
CCC	centrale à cycle combiné (centrale avec turbine à gaz et à vapeur)
CCF	couplage chaleur-force
CH	Suisse
COPA	coefficient de performance annuel
CORE	Commission fédérale pour la recherche énergétique
E/E	eau/eau
ECS	eau chaude sanitaire
el	électrique
équiv.	équivalent
g	gramme
GWh	gigawattheure
h	heure
kW	kilowatt
PAC	pompe à chaleur
PJ	pétajoule
S/W	sol/eau
T	tonne
TAG-	turbine à gaz et à vapeur
TAV	
th	Thermique
TJ	térajoule
TWh	térawattheure

9.	Liste des figures et tableaux
Fig.	1: Flux d'énergie des chaudières à combustible fossile
Fig.	2: Flux d'énergie des pompes à chaleur combinées à des installations à couplage chaleur- force
Fig.	3: Flux d'énergie des pompes à chaleur combinées à une (ou plusieurs) centrale(s) à cycle combiné: l'ensemble du courant actionne des pompes à chaleur
Fig.	4: Flux d'énergie des pompes à chaleur combinées à une (ou plusieurs) centrale(s) à cycle combiné: 42% du courant actionne des pompes à chaleur
Fig.	5: Flux d'énergie des chaudières à combustible fossile
Fig.	6: répartition des chauffages en Suisse aujourd'hui (2005) et potentiel si les PAC et le CCF remplacent les chauffages électriques et les chaudières
Fig.	7: répartition des chauffages en Suisse aujourd'hui (2005) et potentiel si des PAC alimentées par du courant provenant de centrales à cycle combiné (CCC) remplacent les chauffages électriques et les chaudières
Fig.	8: Flux d'énergie de chaudières à combustible fossile
Fig.	9: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: l'ensemble du courant alimente les pompes à chaleur
Fig.	10: Flux d'énergie de la combinaison de pompes à chaleur et d'installations à couplage chaleur-force: 33% du courant alimente les pompes à chaleur
Fig.	11: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: 47% du courant alimente les pompes à chaleur19
Fig.	12: Flux d'énergie de la combinaison de pompes à chaleur et d'installations à couplage chaleur-force: 33% du courant alimente les pompes à chaleur
Fig.	13: Flux d'énergie de la combinaison de pompes à chaleur et de centrale(s) à cycle combiné: 47% du courant alimente les pompes à chaleur
Tabl	eau 1: Potentiels de la chaleur ambiante et de la chaleur utile qui peut en être dégagée grâce aux pompes à chaleur. La production d'électricité d'entraînement est prise en compte dans la réduction des émissions de CO ₂
Tabl	eau 2: Potentiels de la chaleur ambiante et de la chaleur utile qui peut en être dégagée grâce aux pompes à chaleur, convertis en nombre d'unités. La production d'électricité d'entraînement est prise en compte dans la réduction des émissions de CO ₂
Tabl	eau 3: potentiel de chaleur utile provenant de la chaleur ambiante selon la CORE
Tabl	eau 4: courant libéré pour le fonctionnement des PAC par le remplacement des chauffages électriques existants et des chaudières existantes par le CCF, besoins en courant des PAC e bilan. Chiffres issus de [12] et [11]
Tabl	eau 5: potentiel réalisable de réduction des émissions de CO ₂ provenant des combustibles avec des pompes à chaleur et une électricité provenant de la substitution de chauffages électriques, du CCF et de centrales à cycle combiné (CCC). Le total des émissions se monte à 40,8 mio t, dont 24,3 mio t provenant des combustibles, selon l'inventaire CO ₂ de l'OFFEP [1]

Tableau 6: ventes en 1980 et en 2003, par catégorie de puissance	
Tableau 7: objectifs atteints et visés, extrait du concept 2004-2007 élaboré par le domaine	
chaleur ambiante, CCF, froid, adopté par la CORE le 10.9.2004 (tableau reformaté, mais	
contenu inchangé). Abréviations: A: air, S: sol, E: eau	
Tableau 8: consommation d'électricité dans certaines catégories, selon [2] et [18]24	

10. Annexes

10.1. Calcul du nombre d'installations d'ici 2050

Champs d'entrée pour extrapolation				12.09.2005			
Champs calculés	S			BFE/EE/F. Rognon			
Chiffres compara	atifs tirés d	des statistique	es des ch	audières 2000			
Chaudières à		Ventes dans		Taux de renouveller	ment du	Taux de remplacement	nt sur
mazout Ve	entes/a	assainisseme	ents	parc		ventes/a	
814827	21200		18020		2.2%	}	85.0%

Paramètres admis pour les calculs:

Croissance en % par rapp. À l'année précédente de 10% pendant SuisseEnergie puis baisse Les ventes de PAC ne doivent pas dépasser 40'000 unités/an soit 80% du marché du chauffage Le nombre d'installations cumulées ne doit pas dépasser 80% de toutes les chaudières 812'011 Nombre de PAC non cumulées annuellement augmentent à 4% (soit durée de vie de 25 ans) Remplacement de PAC par PAC augmente jusqu'à 100% (saturation du marché) Puissance thermique moyenne par installation atteint 25kW en 2030

		PJ	TJ
Chaleur de	(mazout et		
chaudière	gaz)	222	222'000
Temps fct.	Heures	1'700	
Puissance	GW	36	
Puissance	MW	36'275	
Nombre	mazout, gaz, charbon,		
chaudières	électriques	1'015'014	
Puissance			
moyenne	kW	35.7	
Références:			

Steps toward a sustainable development, Novatlantis, CEPE ETH, Zurich, mars 2004
Selon recensement 2000, voir www.bfs.admin.ch/bfs/portal/fr/index/themen/bau-_und_wohnungswesen

Calcul des quantités à partir de la croissance annuelle

Année	Nombre installations cumulé	Croissance en % p.r. année	Croissance nombre cumulé PAC	Total ventes annuelles PAC	Nombre PAC non cumulées (remplacées par PAC ou autres)	Nombre PAC non cumulées en % ventes annuelles	Nombre PAC non cumulées en % toutes PAC
1990	34824	preceu.	culliule FAC	FAC	FAC ou auties)	ailidelles	FAC
1991	0						
1992	38268						
1993	39750	3.9					
1994	42446	6.8					
1995	45064	6.2		3309			
1996	47864	6.2	2'800	4160	691	16.6%	1.5%
1997	50988	6.5	3'124	4207	1360	32.3%	2.8%
1998	55209	8.3	4'221	5225	1083	20.7%	2.1%
1999	59288	7.4	4'079	6155	1004	16.3%	1.8%
2000	64050	8.0	4'762	6160	2076	33.7%	3.5%
2001	68996	7.7	4'946	6943	1398	20.1%	2.2%
2002	74005	7.3	5'009	7554	1997	26.4%	2.9%
2003	80011	8.1	6'006	8677	2545	29.3%	3.4%
2004	86'950	10.0	6'939	9796	2671	27.3%	3.3%
2005	95'645	10.0	8'695	11'598	2903	25.0%	3.3%
2006	105'210	10.0	9'565	12'757	3193	25.0%	3.3%
2007	115'730	10.0	10'521	14'033	3512	25.0%	3.3%
2008	127'303	10.0	11'573	15'436	3863	25.0%	3.3%
2009	140'034	10.0	12'730	16'980	4250	25.0%	3.3%
2010	154'037	10.0	14'003	18'678	4675	25.0%	3.3%
2011	169'441	10.0	15'404	21'565	6161	28.6%	4.0%
2012	186'385	9.6	16'944	23'722	6778	28.6%	4.0%
2013	204'278	9.2	17'893	25'348	7455	29.4%	4.0%
2014	223'072	8.8	18'794	26'965	8171	30.3%	4.0%
2015	242'702	8.4	19'630	28'553	8923	31.3%	4.0%
2016	263'089	8.0	20'387	30'095	9708	32.3%	4.0%
2017	284'136	7.6	21'047	31'571	10524	33.3%	4.0%
2018	305'730	7.2	21'594	32'960	11365	34.5%	4.0%
2019	327'743	6.8	22'013	34'242	12229	35.7%	4.0%
2020	350'029	6.4	22'287	35'396	13110	37.0%	4.0%

	Nombre installations	Croissance en % p.r. année	Croissance nombre	Total ventes annuelles	Nombre PAC non cumulées (remplacées par	Nombre PAC non cumulées en % ventes	Nombre PAC non cumulées en % toutes
Année	cumulé	précéd.	cumulé PAC	PAC	PAC ou autres)	annuelles	PAC
2021	372'431	6.0	22'402	36'403	14001	38.5%	4.0%
2022	394'777	5.6	22'346	37'243	14897	40.0%	4.0%
2023	416'885	5.2	22'108	37'899	15791	41.7%	4.0%
2024	438'563	4.8	21'678	38'353	16675	43.5%	4.0%
2025	459'614	4.4	21'051	38'594	17543	45.5%	4.0%
2026	479'837	4.0	20'223	38'608	18385	47.6%	4.0%
2027	499'030	3.6	19'193	38'387	19193	50.0%	4.0%
2028	516'995	3.2	17'965	37'926	19961	52.6%	4.0%
2029	533'539	2.8	16'544	37'224	20680	55.6%	4.0%
2030	548'478	2.4	14'939	36'281	21342	58.8%	4.0%
2031	561'642	2.0	13'163	35'103	21939	62.5%	4.0%
2032	572'874	1.6	11'233	33'698	22466	66.7%	4.0%
2033	582'040	1.2	9'166	32'081	22915	71.4%	4.0%
2034	589'025	0.8	6'984	30'266	23282	76.9%	4.0%
2035	593'737	0.4	4'712	28'273	23561	83.3%	4.0%
2036	596'112	0.0	2'375	26'124	23749	90.9%	4.0%
2037	596'112	0.0	0	23'844	23844	100.0%	4.0%
2038	596'112	0.0	0	23'844	23844	100.0%	4.0%
2039	596'112	0.0	0	23'844	23844	100.0%	4.0%
2040	596'112	0.0	0	23'844	23844	100.0%	4.0%
2041	596'112	0.0	0	23'844	23844	100.0%	4.0%
2042	596'112	0.0	0	23'844	23844	100.0%	4.0%
2043	596'112	0.0	0	23'844	23844	100.0%	4.0%
2044	596'112	0.0	0	23'844	23844	100.0%	4.0%
2045	596'112	0.0	0	23'844	23844	100.0%	4.0%
2046	596'112	0.0	0	23'844	23844	100.0%	4.0%
2047	596'112	0.0	0	23'844	23844	100.0%	4.0%
2048	596'112	0.0	0	23'844	23844	100.0%	4.0%
2049	596'112	0.0	0	23'844	23844	100.0%	4.0%
2050	596'112	0.0	0	23'844	23844	100.0%	4.0%

	Puissance thermique	Puissanc					Prod.
	installée /	е		Consom-			chaleur/
		thermique		mation		Proportion	nombre
	installations	installée	COP	électricité	Production	énergies	installations
Année	(kW)	(MW)	Α	(GWH)	chaleur (TJ)	renouv. (TJ)	(kWh)
1990	24	850	2.6	534	4'975	3'053	39'685
1991					0	0	
1992	24	902	2.6	591	5'555	3'427	40'321
1993	23	921	2.6	605	5'731	3'553	40'050
1994	23	956	2.7	574	5'533	3'467	36'211
1995	22	979	2.7	629	6'084	3'820	37'502
1996	21	1003	2.7	688	6'653	4'176	38'609
1997	20	1030	2.8	630	6'239	3'971	33'988
1998	19	1074	2.8	662	6'631	4'248	33'364
1999	19	1103	2.8	663	6'761	4'374	31'676
2000	18	1136	2.9	638	6'620	4'324	28'712
2001	17	1175	2.9	673	7'056	4'633	28'407
2002	16	1216	3.0	665	7'106	4'712	26'674
2003	16	1268	3.0	711	7'679	5'119	26'659
2004	16	1'391	3.1	763	8'514	5'768	27'200
2005	16	1'559	3.2	841	9'541	6'512	27'710
2006	16	1'683	3.2	894	10'302	7'083	27'200
2007	17	1'967	3.3	1'029	12'041	8'336	28'900
2008	17	2'164	3.3	1'115	13'245	9'231	28'900
2009	17	2'381	3.4	1'208	14'569	10'220	28'900
2010	17	2'619	3.4	1'309	16'026	11'312	28'900
2011	18	3'050	3.5	1'503	18'666	13'255	30'600
2012	18	3'355	3.5	1'630	20'532	14'666	30'600
2013	18	3'677	3.6	1'761	22'503	16'164	30'600
2014	18	4'015	3.6	1'896	24'574	17'748	30'600
2015	19	4'611	3.7	2'148	28'221	20'489	32'300
2016	19	4'999	3.7	2'297	30'592	22'324	32'300
2017	19	5'399	3.8	2'447	33'039	24'229	32'300
2018	19	5'809	3.8	2'599	35'550	26'195	32'300
2019	20	6'555	3.9	2'894	40'116	29'696	34'000
2020	20	7'001	4.0	2'975	42'844	32'133	34'000

	Puissance	5 .					Б
	thermique	Puissanc					Prod.
	installée /	e		Consom-		Danier	chaleur/
		thermique	000	mation	David office	Proportion	nombre
	installations	installée		électricité	Production	énergies	installations
Année	(kW)	(MW)	<u> </u>	(GWH)	chaleur (TJ)	renouv. (TJ)	(kWh)
2021	21	7'821	4.0	3'297	47'865	35'997	35'700
2022	21	8'290	4.1	3'466	50'737	38'260	35'700
2023	22	9'171	4.1	3'803	56'129	42'439	37'400
2024	22	9'648	4.1	3'968	59'048	44'762	37'400
2025	23	10'571	4.2	4'313	64'695	49'168	39'100
2026	23	11'036	4.2	4'467	67'542	51'460	39'100
2027	24	11'977	4.2	4'810	73'298	55'982	40'800
2028	24	12'408	4.3	4'944	75'936	58'138	40'800
2029	24	12'805	4.3	5'063	78'366	60'140	40'800
2030	25	13'712	4.3	5'380	83'917	64'550	42'500
2031	25	14'041	4.4	5'467	85'931	66'251	42'500
2032	25	14'322	4.4	5'534	87'650	67'728	42'500
2033	25	14'551	4.4	5'580	89'052	68'963	42'500
2034	25	14'726	4.5	5'605	90'121	69'942	42'500
2035	25	14'843	4.5	5'608	90'842	70'652	42'500
2036	25	14'903	4.5	5'589	91'205	71'084	42'500
2037	25	14'903	4.6	5'548	91'205	71'231	42'500
2038	25	14'903	4.6	5'508	91'205	71'375	42'500
2039	25	14'903	4.6	5'469	91'205	71'518	42'500
2040	25	14'903	4.7	5'430	91'205	71'658	42'500
2041	25	14'903	4.7	5'391	91'205	71'797	42'500
2042	25	14'903	4.7	5'353	91'205	71'933	42'500
2043	25	14'903	4.8	5'316	91'205	72'068	42'500
2044	25	14'903	4.8	5'279	91'205	72'201	42'500
2045	25	14'903	4.8	5'243	91'205	72'332	42'500
2046	25	14'903	4.9	5'207	91'205	72'461	42'500
2047	25	14'903	4.9	5'171	91'205	72'588	42'500
2048	25	14'903	4.9	5'136	91'205	72'714	42'500
2049	25	14'903	5.0	5'102	91'205	72'838	42'500
2050	25	14'903	5.0	5'068	91'205	72'960	42'500
2000	25	14 303	5.0	3 000	0.200	12 300	72 300

10.2. Vue d'ensemble marché du chauffage 2000 et 2003

Données tirées des statistiques relatives aux énergies renouvelables de l'OFEN, 2003 et procal (www.procal.ch/statistik.html)

Remarque: environ 80% des chaudières remplacent des chaudières existantes

CHAUFFAGES		2000	2003	2003
Chaudière à mazout	conv.	21200	17000	40%
	à condensation	0	950	2%
Chaudière à gaz	toutes	12770	14510	34%
Chaudière à combusti-				
ble solide	toutes	950	860	2%
Pompe à chaleur		7164	8732	20%
Chaudière à bois	pellets	330	617	1%
	automatique<50kW	67	136	0%
	automatique>50kW	258	134	0%
TOTAL		42739	42939	
CHAUFFE-EAU		2000	2003	
Boiler à gaz	tous	990	870	
Chauffe-eau	tous	28185	28510	
Chauffe-eau instantané		2300	2000	
Pompe à chaleur	toutes	244	400	
TOTAL		31719	31780	
TOTAL chauffages + cha	auffe-eau	74458	74719	

10.3. Vue d'ensemble agents énergétiques des chauffages dans les bâtiments, selon recensement de la population 2000.

Bâtiments selon mode de chauffage et principal agent énergétique									
Données issues de: http://www.bfs.admin.ch/bfs/portal/fr/index/themen/bau-									
und wohnungswesen/gebaeude und wohnungen/blank/kennzahlen0/gebaeude/heizung.html									
	Année	1990	1990	2000	2000				
		absolu	en %	absolu	en %				
Principal a	gent énergétique	1990		2000					
Ma	Mazout 756'001 58,7 814'827 56,0								
Bois 221'910 17,2 189'571									
Po	mpe à chaleur	24'744	1,9	60'109	4,1				
Ele	ectricité	155'020	12,0	166'248	11,4				
Ga	Z	110'149	8,6	200'187	13,8				
Ch	aleur à distance	14'280	1,1	20'593	1,4				
Ch	arbon	5'241	0,4	1'057	0,1				
Ca	pteur solaire	375	0,0	944	0,1				
Au	Autres 366 0,0 964 0,1								
		1'288'086		1'454'500					
© Office fédéral de la statistique	ue / Recensement d	de la populati	ion 2000, Net	uchâtel 2004					

10.4. Calculs détaillés pour chapitre 5

Voir également [17]

Calculs pour les variantes PAC+CCF et PAC+CCC, en %

Italique: valeurs introduites, combustible et proportion électricité CCF/CCC pour PAC

Encadré: valeurs cibles souhaitées

CCF+PAC:

					Proportion					
					électricité	Courant		Chaleur		Courant
	Combu	Courant	Courant	Chaleur	CCF pour	pour	Chaleur	ambiante	Chaleur	de CCF
Cas	stible	brut CCF	net CCF	CCF	PAC	PAC	PAC	PAC	totale	LIBRE
1	47.0	16.5	16.0	25.9	1.000	16.04	64.2	48.1	90	0.0
2	36.0	12.6	12.3	19.8	1.000	12.29	49.1	36.9	69	0.0
3	90.0	31.5	30.7	49.5	0.330	10.14	40.5	30.4	90	20.6
4	100.0	35.0	34.1	55.0	0.260	8.87	35.5	26.6	90	25.3

Cas Texte Remarque

- 1 Fig. 2,9 PJ, Chaleur 90PJ avec combustible minimal, sans courant
- 2 Kap 3.5a PJ, CCF+PAC produisent 69PJ
- 3 Fig. 10 PJ, maxi=chaleur 90PJ avec courant maximal, combustible -10%
- 4 Fig. 12 PJ, courant maxi, carburant comme chaudière (100PJ), maxi 72PJ de chaleur ambiante

CCF	ETAel	0.35
	ETAth	0.55
Réseau	Pertes	0.025
PAC	COPA	4

CCC+PAC:

Courant
le CCC
LIBRE
0.0
0.0
31.1
25.8

Cas Texte Remarque

- 1 Fig. 3,9 PJ, chaleur 90PJ avec combustible minimal, sans courant
- 2 Kap 3.5b PJ, CCC+PAC produisent 69PJ
- 3 Fig. 4,13 PJ, chaleur 90PJ, combustible comme chaudière (100PJ)
- 4 Fig. 11 PJ, maxi=chaleur 90PJ avec maxi de courant

CCC	ETAel	0.58	Conversion de PJ en nombre		re
	ETAth	0	Nombre	PJ	PJ/install.
Réseau	Pertes	0.075	1'015'014	222	0.000219
PAC	COPA	4	411'492	90	
			315'477	69	
			224'035	49	
			86'871	19	
			73'154	16	