WORKSHOP OR OIL AND GAS RESSOURCES

The depletion of oil and gas world reserves and their consequences on major energy issues

By Pierre-René Bauquis

Former head of strategy and planning of TOTAL Group.

Associated Professor IFP School

Swiss Federal Office of Energy

PLAN OF PRESENTATION

- 1. Oil and gas world production peaks: 13 slides
 - When ?
 - At which production levels ?
- 2. Consequences for the world energy mix: 2 slides

3. Consequences for transportation systems: 2 slides

Part 1:

Oil and gas world production peaks.

- When ?

- At which production levels ?

PESSIMISTS HAVE HISTORICALLY BEEN WRONG

- 1919 "... The peak of U.S. production will soon be past possibly within three years"
- 1936 "...it is unsafe to rest in the assurance that plenty of petroleum will be found in the future merely because it has been in the past."
- 1981 *"If petroleum is not there to begin with, all of the human ingenuity that can be mustered into the service of exploration cannot put it there..."*
- 1990 "... non-OPEC production in the longer term will at best remain stagnant and is more likely to fall gradually due to resource constraints."
- 1998 "Global production of conventional oil will begin to decline sooner than most people think probably within 10 years"

Source : Daniel BUTLER, U.S. EIA/DOE AEO 2001 conference

RESERVES and RESSOURCES

What people "can see": published information, i.e. proven reserves, which is an economical concept, which therefore changes with changes in technology and oil prices - These are the visible part of the iceberg

□ What 99% of people "cannot see", i.e. the non visible part of the iceberg, i.e. the already discovered resources in place on one hand the ultimate reserves on the other hand

Discovered resources published, but could not are be estimated at 3,000 Gbbl i.e. three times the proven reserves of 1,000 Gbbl

Ultimate reserves today (estimated 2000/3000 Gbbl) are two to three times the proven reserves of around 1,000 Gbbl

PROVEN RESERVES : AN OPTIMISTIC PICTURE

Observing the "visible part of the iceberg" leads to conclude that we have plentiful and fast growing oil and gas reserves and that there is no problem

ULTIMATE RESERVES : A PESSIMISTIC VIEW

Beetween 1973 and 2000 there is practically no increase in ultimate conventional oil reserves estimates

Bern 27 February 2004 - 7

HISTORICAL VIEWS ON ULTIMATE RESERVES

Total Professeurs Associés

Total Prop

27 February 2004 - 8

Bern

THE IRREVERSIBLE DECLINE OF OIL PRODUCTIONS IN THE USA

Total Professeurs Associés

Bern 27 February 2004 - 9

Total Professeurs Associés

Total Prof

Oil: towards a world of mature reservoirs

Total Professeurs Associés

Source: IHS, Total (est)

Bern

Gas: same trend with 20 y delay and less impact

Total Professeurs Associés

Source: IHS, Total (est)

Bern

CAN WE RECONCILE LONG-TERM VIEWS

- Increase in proven reserves from 1973 to 2000 largely due to old discoveries reevaluations and not essentially to new discoveries
- Reevaluations due both to increases in expected recovery rates, and to underestimation of accumulation volumes at early evaluation stages
- A secondary factor has been the acceleration of the delineation development process
- □ Last but not least the emergence of non conventional reserves as part of new proven reserves (permanent blurring of frontiers beetween the two categories)

Source : P.R. BAUQUIS. Fort Lauderdale 28 NOV 2000

THE ROLE OF ULTRA-HEAVY OIL IN FUTURE RESERVES GROWTH

In billion of barrels	Estimated volume in place	1995 estimated reserves	2030 estimated reserves
Orinoco	1,200	100	300
Athabasca	1,700	100	300

Extra heavy crude - bitumens will represent the major portion of new "reserves"

(See World Energy Congress Houston September 1998 - Paper by P.R. Bauquis)

Total Professeurs Associés

Part 2:

Consequences of the oil and gas peaks for the world energy mix

AUTHOR SYNTHETIC ENERGY FUTURE VIEW

200			2020		50 _	
Source: Revue de l'Energie,50 ans, n° 509 Sept. 99Gtep	%	Gtep	%	Gtep	%	
Oil3.7Natural gas2.1Coal (including lignite)2.2	40 22 24	5.0 4.0 3.0	40 27 20	3.5 4.5 4.5	20 25 25	
Total fossil fuels8.0	86	12.0	87	12.5	70	
Renewables From which used for electricity generation (0.5)	7.5	1 (0.7)	6.5	1.5 (0.9)	8	
Nuclear 0.6	6.5	1	6.5	4	22	
Fotal commercial energies9.3	100.0	14.0	100.0	18.0	100.0	

Total Prof

Total Professeurs Associés

Bern

THE RELATED GREEN-HOUSE GASES ISSUE

CO₂ ppm

Assumption 1: use of 1 GtC generates an increase of 0.277 ppm CO₂ in the atmosphere Assumption 2: use of 1 GtC generates an increase of 0.228 ppm CO₂ in the atmosphere

Bern

Part 3:

Consequences: what energy supplies for transportation systems in the long term ?

Bern 27 February 2004 - 20

Total Professeurs Associés

Total Prof

Total Professeurs Associés

Bern