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CO2 emissions 

2 

relies heavily on coal 

Poland 93 % Israel 71 %* Czech Rep. 59 % 

South Africa 93 %* Kazakhstan 70 %* Greece 58 % 

Australia 80 % India 69 %* USA 50 % 

PR China 78 %* Morocco 69 %* Germany 47 % 

The use of coal for electricity generation for selected countries 

Source IEA 2007 

* Only 2005 data available for these countries 

27th June 2011 
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The three different CO2 capture concepts 
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Sorbent-enhanced steam methane reforming 
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Sorbent enhanced steam methane reforming (1-3) 

 

CH4 + 2 H2O + CaO  CaCO3 + 4 H2; H0
293K = -13 kJ/mol  

Steam methane reforming (1) 

 

CH4 + H2O  CO + 3 H2;  

H0
293K = + 206 kJ/mol 

 

 

Water-gas-shift (2) 

 

CO + H2O  CO2 + H2; 

H0
293K = -41 kJ/mol CO2-capture (3) 

 

CaO + CO2  CaCO3;       

H0
293K = -178 kJ/mol 
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CO2 sorbent 
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 Different CO2 sorbents have been proposed including Li2ZrO3, 

KLiZrO3, Li4SiO4, Na2ZrO3, CaO or K-promoted hydrotalcite 

 

 The CO2 sorbent has to fulfill the following criteria:  

 

(i) high CO2 capture capacity (g CO2/g sorbent) 

(ii)  cyclic capture stability 

(iii)  fast kinetics for the CO2 capture and release reaction 

(iv)  suitable thermodynamics 

 

 Ochoa-Fernández et al. argued that CaO fullfils criteria (i-iv) best, 

e.g. the CO2 capacity of pure CaO is 0.79 g CO2/g sorbent. 

 

 However, the major disadvantage of pure CaO is its rapidly 

decreasing, cyclic CO2 uptake. 
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Calcination 
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Capture of CO2 (carbonation):   CaO + CO2 → CaCO3 ∆𝐻   25°𝐶
0 =  −178 𝑘𝐽/𝑚𝑜𝑙 

Sorbent regeneration (calcination):  CaCO3 → CaO + CO2  ∆𝐻  25°𝐶
0 =  +178 𝑘𝐽/𝑚𝑜𝑙 

Broda et al., Porous materials for carbon dioxide capture, Springer-Verlag, Berlin Heidelberg, 2014  

Barin and Platzki, Thermochemical data of pure substances. VCH Verlagsgesellschaft, Weinheim, 1995   
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Equilibrium thermodynamics 
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T < 575 C  equilibrium is almost completely on product side  high 

purity H2 
 

T > 675 C  decomposition of CaCO3  conventional SMR reaction 

 

 

 

SE-SMR 
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Maximum theoretical CO2 uptake 

Naturally occurring calcium-based sorbents 
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Characteristics of the carbonation reaction 
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Critical product layer thickness: ~ 50 nm (Alvarez 

and Abanades; Ind. Eng. Chem. Res., 44, 5608-

5615, 2005) 
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Sintering of un-supported CaO 
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20 mm

Template removed Carbonated After 8 cycles 
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Material options for the SE-SMR reaction: 
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1. Limestone + reforming catalyst 

2. Synthetic sorbent + dedicated reforming catalyst 

3. Bifunctional catalyst - sorbent 
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Synthesis of highly efficient CO2 

sorbents 
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Synthesis of Ca-Al-based, CO2 sorbents with a hierarchical 

porosity 
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2. Gelation 

4. Crystallization and 

template removal 

CaCO3-based 

crystalline film 

Nano-structured 

crystalline film  Carbon sphere 

3. Carbonization 

via pyrolysis 

Resorcinol/ formaldehyde 

solution (molar ratio = 1:2) 

Ca2+ + Al3+ solution   

 

1. Mixing of the precursors 

Broda et al., Adv. Mat., 24, 3059-3064, 2012 
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SEM images of the synthesis steps 
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pure carbon gel 5 mins 10 mins 

3 days 500 C in N2 

60 mins 

800 C in air 800 C in air 

Broda et al., Adv. Mat., 24, 3059-3064, 2012 
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Cyclic CO2 uptake of the new sorbent (TGA) 
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The new sorbent exceeds the CO2 uptake of limestone by 200 %.  

Broda et al., Adv. Mat., 24, 3059-3064, 2012 
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Synthesis of a bifunctional  

catalyst-sorbent 
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Bi-functional catalyst-sorbent 

(Ni-Ca-Htlc) 
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1. Aqueous solution of 

Ca2+, Mg2+, Ni2+ and Al3+ 

2. Precipitation using 
NaOH and Na2CO3 

3. pH adjustment to 

8.6 using HNO3 4. Reflux at 80 oC for 16 h 

5. Drying, 70 oC, 72 h 

6. Calcination:  

a) 600 oC, 6 h 

b) 800 oC, 2 h  

Reference materials 

 

Ni-Htlc (47 wt.% Ni) + limestone 

Ni-SiO2 (Sigma Aldrich, 52 wt. % Ni) + limestone 

Broda et al., ACS Catalysis, 2, 1635-1646, 2012  

46 wt.% Ni 

21 wt.% CaO 
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SE-SMR performance (Ca-Ni-Htlc) 
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99 % pure H2  

in a single step 

conventional  

reforming 
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High-purity H2 production 
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• Ca-Ni-Htlc shows a stable pre-breakthrough production of H2 after the 6th cycle. 

• Continuous deactivation of Ni-Htlc + limestone 

• For Ni-SiO2 + limestone total loss of activity from the 2nd cycle 

   Ca-Ni-Htlc 

□  Ni-Htlc + limestone 

∆    Ni-SiO2 + limestone 
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