

Advanced pre-combustion CO₂ capture (ADhOC-CCS)

Christoph Müller

Laboratory of Energy Science and Engineering, ETH Zurich

CO₂ emissions

The use of coal for electricity generation for selected countries

DMAVT

Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

The three different CO₂ capture concepts

Sorbent-enhanced steam methane reforming

Sorbent enhanced steam methane reforming (1-3)

 $CH_4 + 2 H_2O + CaO \rightarrow CaCO_3 + 4 H_2; \Delta H^0_{293K} = -13 \text{ kJ/mol}$

Steam methane reforming (1)

$$\begin{array}{l} \mathsf{CH}_4 + \mathsf{H}_2\mathsf{O} \ \rightarrow \mathsf{CO} + 3 \ \mathsf{H}_2; \\ \Delta \mathsf{H}^0_{293\mathrm{K}} = + \ 206 \ \mathrm{kJ/mol} \end{array}$$

Water-gas-shift (2)

$$\begin{array}{l} \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2\text{;} \\ \Delta \text{H}^0_{293\text{K}} = -41 \text{ kJ/mol} \end{array}$$

CO₂ sorbent

- Different CO₂ sorbents have been proposed including Li₂ZrO₃, KLiZrO₃, Li₄SiO₄, Na₂ZrO₃, CaO or K-promoted hydrotalcite
- The CO₂ sorbent has to fulfill the following criteria:
 - (i) high CO_2 capture capacity (g CO_2 /g sorbent)
 - (ii) cyclic capture stability
 - (iii) fast kinetics for the CO₂ capture and release reaction
 - (iv) suitable thermodynamics
- Ochoa-Fernández et al. argued that CaO fullfils criteria (i-iv) best, e.g. the CO₂ capacity of pure CaO is 0.79 g CO₂/g sorbent.
- However, the major disadvantage of pure CaO is its rapidly decreasing, cyclic CO₂ uptake.

Calcium looping process

Capture of CO₂ (carbonation):

Sorbent regeneration (calcination):

 $CaO + CO_2 \rightarrow CaCO_3 \Delta H^0_{25^\circ C} = -178 \, kJ/mol$ $CaCO_3 \rightarrow CaO + CO_2 \Delta H^0_{25^\circ C} = +178 \, kJ/mol$

Broda et al., Porous materials for carbon dioxide capture, Springer-Verlag, Berlin Heidelberg, 2014 Barin and Platzki, Thermochemical data of pure substances. VCH Verlagsgesellschaft, Weinheim, 1995

Equilibrium thermodynamics

T < 575 °C equilibrium is almost completely on product side \rightarrow high purity H₂ T > 675 °C decomposition of CaCO₃ \rightarrow conventional SMR reaction

Characteristics of the carbonation reaction

Molar volume CaCO₃/molar volume CaO ~ 2

Sintering of un-supported CaO

Template removed

Carbonated

After 8 cycles

Material options for the SE-SMR reaction:

- 1. Limestone + reforming catalyst
- 2. Synthetic sorbent + dedicated reforming catalyst
- 3. Bifunctional catalyst sorbent

Synthesis of highly efficient CO₂ sorbents

Synthesis of Ca-AI-based, CO₂ sorbents with a hierarchical porosity

Broda et al., Adv. Mat., 24, 3059-3064, 2012

SEM images of the synthesis steps

Broda et al., Adv. Mat., 24, 3059-3064, 2012

Cyclic CO₂ uptake of the new sorbent (TGA)

The new sorbent exceeds the CO₂ uptake of limestone by 200 %.

Broda et al., Adv. Mat., 24, 3059-3064, 2012

Synthesis of a bifunctional catalyst-sorbent

SE-SMR performance (Ca-Ni-Htlc)

High-purity H₂ production

- Ca-Ni-Htlc shows a stable pre-breakthrough production of H₂ after the 6th cycle.
- Continuous deactivation of Ni-Htlc + limestone
- For Ni-SiO₂ + limestone total loss of activity from the 2nd cycle

Acknowledgement

Swiss National Science Foundation

Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung

Bundesamt für Energie BFE

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

- Group of Prof. Copéret, ETHZ
- Lydia Zeinder
- EMEZ at ETHZ