Energy Technology Perspectives 2012

Pathways to a Clean Energy System

Berne, Switzerland, 24 September 2012

Bo Diczfalusy, Director, Directorate of Sustainable Energy Policy and Technology Markus Wråke, ETP Project Leader, Head of Energy Supply Technology Unit

> International Energy Agency

> > © OECD/IEA 2012

ETP 2012 – Choice of 3 Futures

ETP 2012

2DS

a vision of a **sustainable** energy system of reduced Greenhouse Gas (GHG) and CO₂ emissions

The 2°C Scenario

4DS

reflecting pledges by countries to cut emissions and boost energy efficiency

The 4°C Scenario

6DS

where the world is now heading with potentially **devastating** results

The 6°C Scenario

Clean energy: slow lane to fast track

Progress is too slow in almost all technology areas

Significant action is required to get back on track

2012

Renewables provide good news

ETP 2012

Renewable power generation

42%

Average annual growth in Solar PV

75%

Cost reductions in Solar PV in just three years in some countries **27%** Average annual growth in wind

Energy RD&D has slipped in priority

ETP 2012

Share of energy RD&D in total R&D

Energy RD&D

USD billion

iea

© OECD/IEA 2012

A smart, sustainable energy system

ETP 2012

© OECD/IEA 2012

Recommendations to Governments

1. Create an investment climate of confidence in clean energy

2. Unlock the incredible potential of energy efficiency – "the hidden" fuel of the future

3. Accelerate innovation and public research, development and demonstration (RD&D)

ETP

2012

2012

Low-carbon electricity: a clean core

Global electricity generation in the 2DS

Renewables will generate more than half the world's electricity in 2050 in the 2DS

Renewables cover two-thirds of the electricity mix in 2050 in the 2DS, with wind power alone reaching a share of 30% in the mix.

© OECD/IEA 2012

Renewables growth in Europe continues but slows 2012

Despite policy adjustments and macroeconomic situation, growth continues

All technologies have roles to play

ETP 2012

Technology contributions to reaching the 2DS

Nuclear is one piece of the puzzle

Natural gas as a transitional fuel

- Power generation from natural gas increases to 2030 in the 2DS and the 4DS.
- From 2030 to 2050, generation differs markedly.

Natural gas-fired power generation must decrease after 2030 to meet the CO_2 emissions projected in the 2DS scenario.

2012

The CCS infant must grow quickly

ETP 2012

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Heating & Cooling: the forgotten giant ETP 2012

Heating and cooling account for 46% of global energy use. Their huge potential for cutting CO_2 emissions is often neglected.

Electric vehicles need to come of age 2012

More than 90% of new light duty vehicles need to be propelled by an electric motor in 2050

 International Energy Agency
 © OECD/IEA 2012

Government targets need to be backed by policy action

Fuel economy makes a difference

Fuel economy improvements in conventional and hybrid vehicles alone can save 11 mbbl/day.

ETP

2012

Clean energy investment pays off

ETP 2012

Every additional dollar invested in clean energy can generate 3 dollars in return.

Sustainable future still in reach 2012 Can we get on Is a clean energy Are we on track to transition urgent? track? reach a clean energy future? YES 🗸 NO X YES 🗸

ETP

Explore the data behind ETP

Home > Topics > Transport	Energy Flows	# Transport	m e ?	Regions
CCC)	China in 203 Total Emissions: 10 GECO ₂ Contributions to : CCS Renewables End-use F&E Fuel watching	5		World Astrant AstAlt ⇒ AstAlt ⇒ fraul ⇒ India ■ Rusia ⇒ South Africa
10-	Nuclear Power gen.	1 5%	Selection	Technology Sector Sector Feedwalks Fuel switching Sector Sector
0 1 1 1 1990 1995 2000 2005	1 1 1 2010 2015 2020	1 1 1 1 2025 2030 2035 2040	Time 2045 2050 Years	 6°C − 4°C 4°C − 2°C 6°C − 2°C
ETP Report 20 Explore the highlight interactive data visu	s of the report u	41	Annotation * Scenario (2DS)	

www.iea.org/etp

Additional slides

Assumptions- GDP and population

ETP 2012

Table A.1	GDP project	ions in ETP 20	12 (assumed i	dentical acros	s scenarios)
CAAGR (%)	2009-20	2020-30	2030-50	2009-50	2050-75
World	4.2	3.1	2.9	3.3	2.7
OECD	2.4	2.0	1.8	2.0	1.8
Non-OECD	6.1	4.1	3.5	4.3	3.1
ASEAN	5.3	3.5	3.8	4.1	3.9
Brazil	4.3	3.3	3.0	3.4	2.8
China	8.1	4.4	3.2	4.8	2.4
European Union	2.0	1.8	1.7	1.8	1.6
India	7.7	5.9	4.8	5.8	3.9
Mexico	3.7	3.1	2.8	3.1	2.4
Russia	4.1	3.3	2.4	3.1	1.8
South Africa	3.6	2.6	2.9	3.0	3.1
United States	2.6	2.2	2.1	2.3	2.1

Notes: CAAGR = compounded average annual growth rate; ASEAN = Association of Southeast Asian Nations.

Sources: IMF, 2011 and 2011-16; IEA analysis.

Table A.2Population projections used in ETP 2012

Country	2010	2020	2030	2040	2050	2060	2070	2075
World	6 896	7 657	8 321	8 874	9 306	9 615	9 827	9 905
OECD	1 234	1 302	1 353	1 385	1 403	1 408	1 409	1 410
Non-OECD	5 662	6 354	6 969	7 489	7 904	8 207	8 418	8 495
ASEAN	592	654	704	738	756	759	750	743
Brazil	195	210	220	224	223	217	208	203
China	1 341	1 388	1 393	1 361	1 296	1 212	1 126	1 086
European Union	500	511	516	515	512	504	496	494
India	1 225	1 387	1 523	1 627	1 692	1 718	1 708	1 692
Mexico	113	126	135	142	144	143	140	138
Russia	143	141	136	131	126	121	116	115
South Africa	50	53	55	56	57	57	57	57
United States	310	337	362	383	403	421	438	446

Note: Mumbers in millions

Source: UN, 2011

Assumptions- fossil fuel prices

Table A.3	Fossil fuel prices by scenario									
Oil		Scenario	2010	2020	2025	2030	2035	2040	2045	2050
IEA crude oil import p 2010 USD/bbl	orice	2DS 4DS 6DS	78 78 78	97 109 118	97 114 127	97 117 134	97 120 140	92 119 143	89 119 146	87 118 149
Coal		Scenario	2010	2020	2025	2030	2035	2040	2045	2050
OECD steam coal imp 2010 USD/tonne	port price	2DS 4DS 6DS	99 99 99	93 106 109	83 108 113	74 109 116	68 110 118	64 109 121	62 109 123	60 109 126
Gas		Scenario	2010	2020	2025	2030	2035	2040	2045	2050
United States import 2010 USD/Mbtu	price	2DS 4DS 6DS	4 4 4	7 7 7	8 7 8	8 8 8	8 9 9	7 8 9	7 8 9	7 8 10
Europe import price 2010 USD/Mbtu		2DS 4DS 6DS	7 7 7	10 10 11	10 11 12	10 12 13	9 12 13	9 12 13	9 12 14	8 12 14
Japan import price 2010 USD/Mbtu		2DS 4DS 6DS	11 11 11	12 13 14	12 13 14	12 14 15	12 14 15	12 14 15	11 14 16	11 14 16

Note: bbl = barrel, Mbtu = million British thermal units

© OECD/IEA 2012

Carbon prices (model result)

ETP 2012

Table 1.1	Global marginal abatement costs and example marginal abatement options in the 2DS							
	2020	2030	2040	2050				
Marginal cost (USD/tCO ₂)	30-50	80-100	110-130	130-160				
Energy conversion	Onshore wind Rooftop PV Coal w CCS	Utility scale PV Offshore wind Solar CSP Natural gas w CCS Enhanced geothermal systems	Same as for 2030, but scaled up deployment in broader markets	Biomass with CCS Ocean energy				
Industry	Application of BAT in all sectors Top-gas recycling blast furnace Improve catalytic process performance CCS in ammonia and HVC	Bio-based chemicals and plastics Black liquor gasification	Novel membrane separation technologies Inert anodes and carbothermic reduction CCS in cement	Hydrogen smelting and molten oxide electrolysis in iron and steel New cement types CCS in aluminium				
Transport	Diesel ICE HEV PHEV	HEV PHEV BEV Advanced biofuels	Same as for 2030, but wider deployment and to all modes	FCEV New aircraft concepts				
Buildings	Solar thermal space and water heating Improved building shells	Stability of organic LED System integration and optimisation with geothermal heat-pumps	Solar thermal space cooling	Novel buildings materials; development of "smart buildings" Fuel cells co-generatior				

Notes: HVC - high-value chemicals, FCEV - fuel-cell electric vehicle, LED - light emitting diode.

Visualising ETP Data – reductions

ETP 2012

Visualising ETP Data – energy flows

ETP 2012

Visualising ETP Data – fuel flows

ETP 2012

© OECD/IEA 2012

Fuel economy makes a difference

Fuel economy improvements in conventional and hybrid vehicles alone can save 11 mbbl/day.

ΕTΡ

2012

Electrification is a double-edged swordETP
2012

Heat pumps can deliver great savings - under the right conditions and with correct operation.

Energy consumption in Japanese buildings sector

2012

Buildings' energy consumption decline in the 2DS because of energy efficiency improvement and population decrease

Building sector challenges differ

2012

75% of current buildings in OECD will still be standing in 2050

ETP 2012

iea

Power generation; Renewables

Most renewables are broadly on track to achieve the 2DS objectives by 2020. Some renewable technologies still need policy support to drive down costs (e.g. CSP and offshore wind).