Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE

ZEP (Technology PlatformZero Emission Power Plants)- R & D activities in Europe

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

Paul Scherrer Institut

Overview

• European networks:

0

- Technology Platform Zero Emission Power Plants The European CCS Demonstration Project Network
- European Research Framework Program (FP7):
 - Integrated research Projects, e.g. H2-IGCC

- European Energy Research Alliance (EERA) CO₂ Capture and Storage
- European Carbon Dioxide Capture and Storage Laboratory Infrastructure (ECCSEL)
- European Industrial Initiative (EII)
 - Carbon Capture & Storage CCS

with participants like

European Technology Platform for Zero Emission Fossil Fuel Power Plants

CO₂ Capture & Storage A key solution for combating climate change

European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP)

www.zeroemissionsplatform.eu

European Technology Platform for Zero Emission Fossil Fuel Power Plants

www.zeroemissionsplatform.eu

CO₂ MITIGATION VIA INCREASE OF EFFICIENCY

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

CO₂ MITIGATION VIA CARBON CAPTURE & STORAGE (CCS)

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

Swiss Federal Office of Energy (BFE) c/o Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland

6

European Technology Platform for Zero Emission Fossil Fuel Power Plants

CCS workshop 2011 · Carbon Capture and Storage: Current status and future perspectives

Paul Scherrer Institut

The European CCS Demonstration Project Network

www.ccsnetwork.eu

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

0

Swiss Federal Office of Energy (BFE) c/o Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland

8

The European CCS Demonstration Project Network

www.ccsnetwork.eu

0

Project title 💲	Storage location 💲
Porto Tolle	Adriatic Sea
Jänschwalde	Natural gas field "Altmark", saline
Belchatów CCS Project	Three potential storage sites have been
Hatfield CCS Demonstration Project	South North Sea, hydrocarbon reservoir or
Rotterdam ROAD	North Sea, near the Dutch coast
Compostilla Oxy CFB 300	Duero basin

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

Paul Scherrer Institu:

The European CCS Demonstration Project Network

www.ccsnetwork.eu

Eligibility Criteria

0

Projects in the Network shall have sound plans to **demonstrate the full CCS value chain by 2015** and shall fulfil the following *technical criteria*: The CCS project shall for a fossil fuel-fired power plant have a **minimum gross production of 250MWe** before CO2 capture and compression. The CCS project shall for an industrial plant realise a **minimum of 500kt per year of stored CO2.** The **CO2 capture rate shall not be less than 85%** of the treated flue gas stream. The project, i.e. the plant to which CCS is applied, shall be **located within the European Economic Area (EEA)**

CCS workshop 2011 · Carbon Capture and Storage: Current status and future perspectives

Swiss Options for participation in the ZEP Flagship Programme

0

Swiss Natural Gas Pipeline Network

concerted effort needed

- political boundary conditions in CH (& France)
- commitment of project developer(s)
- funding of Flagship Programme (7-12 Bln€)

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

Alstom's CCS development programs

Presented to Swiss Electric

Dr. Andreas Brautsch Director R&D Programs CCS Bern, Aug 31st 2011

Status of CCS development

1st CCS Generation in Demo phase, 2nd Generation at pilot level

On-going CCS projects - jfl - 15 Nov 2010

Advanced Amine Process (AAP)

Principle

- Flue gas is treated with aqueous amine solution, which reacts with CO₂
- Raising the temperatures reverses the above step – releasing CO₂ and recycling the solution for re-use

Key features AAP

- Proven in natural gas & syngas purification
- Carbon capture from flue gas is a new application with new challenges
- More efficient capture of CO₂ than MEA process
- Higher tolerance against oxygen & trace contaminants than MEA
- Lower solvent degradation rates than MEA

Advanced Amine Process (AAP) Alstom roadmap

Chilled Ammonia Process (CAP)

Principle

- Cooled flue gas is treated with ammonium carbonate in solution, which reacts with CO₂ to form ammonium bicarbonate
- Raising the temperatures reverses the above reactions – releasing pressurized CO₂

Advantages

- Energy-efficient capture of CO₂
- High CO₂ purity
- Tolerant to oxygen and flue gas impurities
- Stable reagent, no degradation possible, no emission of trace contaminants
- Low-cost, globally available reagent

Source: Alstom

Chilled Ammonia Process (CAP) Alstom roadmap

Selected by Alberta CCS fund and the Canada Clean Energy Fund and ecoENERGY Technology Initiative

In operation Tests completed In construction Coming

Selected by US DOE to receive CCPI Round 3 funding

Oxy-Combustion Process Technology Overview

Principle

- Fuel is burned in a mixture of oxygen and re-circulated flue-gas. Due to the absence of Nitrogen, the resulting flue gas is enriched in CO₂
- After water condensing and purification, CO₂ is compressed and send for storage or re-use.

Advantages

- Reliability: main components exist, only adaptation required
- All types of boilers / firing systems adaptable to oxy to cover complete fuel range
- Rapid scale-up to large size (1,000 MWe range) possible after large demos. Retrofit in Oxy can be addressed
- High efficiency and competitiveness of supercritical/ultra-supercritical cycles and large unit size will be key benefits

Update on Alstom roadmap Oxy-Combustion Process

Moving forward to scale-up the technology

On-going CCS projects - jfl - 15 Nov 2010

Alstom activity on demonstrations

ALSTOM

Operating

Vattenfall Schwarze Pumpe Germany - 30 MWth **Oxy** - Lignite

AEP Mountaineer USA - 58 MWth Chilled Ammonia - Coal

RFCS EU - Darmstad Germany – 1 MWth Chemical looping - Coal

Coming

EdF – Le Havre France – 5 MWth Adv. Amines - Coal

Statoil Mongstad Norway - 40 MWth Chilled Ammonia - Gas

EoN Karlshamn Sweden - 5 MWth Chilled Ammonia - Fuel

Total Laco France - 30 MWth Oxy - Gas

PGE Belchatow Poland – 260 MWe Adv. Amines - Lignite

Vattenfall Jänschwalde Transalta Canada - >200 MWe Germany - 250 MWe Oxy - Lignite Chilled Ammonia - Coal

Selected for receiving EEPR funding

Selected by Alberta and Federal Canadian funding

Selected by US DOE to receive **CCPI Round 3 funding**

Alstom BSF Windsor US - 15 MWth Oxy - Coals

On-going CCS projects - jfl - 15 Nov 2010

 $\mathbf{\nabla}$

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE

KRAFTWERK 2020 – SWISS POWER GENERATION IN A CARBON CONSTRAINED WORLD

CCS workshop 2011 • Carbon Capture and Storage: Current status and future perspectives

Programm-Partner "Kraftwerk 2020"

0