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Advanced control strategy of a solar domestic hot water
system with a segmented auxiliary heater

T. Prud'homme*, D. Gillet
Institut d'automatique, EÂ cole Polytechnique FeÂdeÂrale de Lausanne, CH-1015 Lausanne, Switzerland

Abstract

This paper describes improvements that can be introduced at both a structural and control level in order to improve the overall ef®ciency

of solar kits for domestic hot water supply.

The plant under consideration is a solar domestic hot water system (SDHWS) manufactured in Switzerland. The heat exchanger is a

mantle, which surrounds the entire storage tank.

One major structural improvement has been designed. It consists of the replacement of one single electrical element as an auxiliary heater

by three smaller ones with different lengths. This con®guration requires the manipulation of two additional actuators. An advanced control

strategy has been developed to handle the resulting complexity and to achieve higher performances. The actuators are the pump driving the

¯uid in the collector loop and the three electrical elements. A predictive control strategy has been proposed and validated. It requires

solving of an optimization problem and implementation of a state estimator.

Weather forecasts as well as prediction of the users' needs in terms of tapped water are required to implement this predictive control

strategy. The weather forecasts are provided on-line by the Swiss Meteorological Institute (SMI). The prediction of the users' needs is

updated every day using an extended Kalman ®lter.

Segmentation of the auxiliary heater coupled with a suitable advanced control strategy have led to signi®cant improvements in terms of

comfort and energy consumption. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The current control strategies in solar domestic hot water

system (SDHWS) are mainly based on manufacturers'

know-how. However, these strategies do not take into

account the evolution of the operational conditions, typically

the users' needs in terms of draw-off and the weather

conditions. They have been designed to work in the worst

case scenario, often leading to very conservative behavior.

The initial goal of this contribution was the development

of an advanced control strategy for all the variables manipu-

lated. At this time, no changes in the design of the SDHWS

were planned. However, previous results [1] have shown the

potential bene®t of implementing a segmented auxiliary

heater.

The SDHWS and its model are described in Section 2.

The segmentation of the auxiliary heater is detailed and

justi®ed in Section 3. The principle of the advanced control

strategy is presented in Section 4. The optimization proce-

dure and the state estimator are described in Sections 5 and

6, respectively. Section 7 presents how the predictions of

weather data and the predictions of the users' needs in terms

of draw-off are obtained. Simulation results and compar-

isons of the energy performance achieved with the advanced

control strategy proposed versus a conventional one are

given in Section 8.

2. The SDHWS and its dynamic model

A schematic view of the SDHWS under consideration is

given in Fig. 1.

In this ®gure, the location of eight available temperature

measurements Mi is indicated. Strati®cation in the storage

tank is well established owing to four valves controlled by an

autonomous switching law. Only one valve is opened at a

time. The ®rst valve (the highest one) is opened if

�M8 ÿM2� > 0, the second is opened if �M8 ÿM2� > 0

and �M8 ÿM3� > 0, etc. Basically, a valve is opened if

the temperature of the collecting ¯uid at the output of
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the collector is higher than the temperature in the storage

tank at the level of this valve, and if no upper valve can be

opened.

The storage, the mantle, the pipes of the collector loop

and the collector are modeled using 13, 10, 4 and 1

node(s), respectively. In reality, the temperature of the

water inside the storage tank and inside the heat exchanger

vary gradually. This simple model, although detailed

enough, is in fact well suited to develop and analyze

control strategies without cumbersome computational lim-

itations.

The dynamic behavior of the SDHWS is de®ned by

computing the energy balance of each node. It leads to

one differential equation per node. Using the conditional

factor xi (which enables or disables the corresponding term

according to the node location), the energy balance is

represented by Eq. (1) for each node �s; i� of the store, by

Eq. (2) for each node �h; j� of the heat exchanger and, by

Eq. (3) for the node (c) of the collector and by Eq. (4) for

each node �p; k� of the pipes of the collector loop.

Ms;iCpf
dTs;i

dt
� xiKh;s�Th;iÿ2 ÿ Ts;i� � _mLCpf�Ts;i�1 ÿ Ts;i�
� �1ÿ xi�Ks;a�Tamb;in ÿ Ts;i� � _Qi (1)

Nomenclature

State variables of the SDHWS model

Tc temperature of the liquid inside the collector

(K)

Th;j temperature of the jth node of the heat

exchanger (K)

Tp;k temperature of the kth node of the pipe of the

collector loop (K)

Ts;i temperature of the ith node of the store (K)

Constant parameters of the SDHWS model

A collector area (m2)

c0 collector's optical efficiency

c1 collector's heat loss coefficient (kJ/(m2K))

Ccol thermal capacity of the collector (kJ/K)

Cpc specific thermal capacity of the collecting

fluid (kJ/(kgK))

Cpf specific thermal capacity of the fluid in the

store (kJ/(kgK))

Kh;a heat loss capacity rate from the heat exchanger

to ambient (kW/K)

Kh;s heat transfer capacity rate from the heat

exchanger to the store (kW/K)

Kp;a heat loss capacity rate from the pipe of the

collector loop to ambient (kW/K)

Ks;a heat loss capacity rate from the store to

ambient (kW/K)

Mh;j mass of the jth node of the heat exchanger (kg)

Mp;k mass of the kth node of the pipe of the

collector loop (kg)

Ms;i mass of the ith node of the store (kg)

Manipulated inputs

_mC mass flow rate of the collecting fluid (kg/s)

P1 power supply of the longest electrical element

(kW)

P2 power supply of the medium electrical ele-

ment (kW)

P3 power supply of the shortest electrical element

(kW). It should be noted that _Qi and Pj are

related. We have
P

all i
_Qi � P1 � P2 � P3

_Qi auxiliary heater input of the ith node of the

store (kW)

Meteorological disturbances

IT global solar radiation on the collector surface

(kW/m2)

Tamb;ex ambient temperature around the collector (K)

Tamb;in ambient temperature around the store (K)

Other disturbances

_mL mass flow rate of the fluid in the store (kg/s)

Tin temperature of the liquid at the input of the

store (K)

Objective function

J objective function

Pelec power supplied to the three electrical elements

(kW)

Ppump power supplied to the pump driving the

collecting fluid (kW)

Psol power gathered by the collector (kW)

a trade-off factor between energy consumption

and comfort

Optimization procedure

a vector containing all of the decision variables

ai

a0 initial choice for a

a� optimal choice for a

gi gradient of J versus ai

G vector containing all of the gi

N number of decision variables

x vector containing the 28 temperatures of the

model

Energy balance

Eamb energy loss to ambient (kJ)

Eelec electrical energy consumed by the auxiliary

heaters (kJ)

Eload energy tapped by the users (kJ)

Esol solar energy gathered (kJ)

DE internal energy variation (kJ)

F1 solar fraction computed in the common way

(%)

F2 solar fraction computed in the new way (%)
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where

i � f1; . . . ; 13g; Ts;14 � Tin;

xi � 1 if i 2 f3; . . . ; 12g; otherwise xi � 0:

Mh;jCpc
dTh;j

dt
� Kh;s�Ts;j�2 ÿ Th;j� � _mCCpc�Ttest ÿ Th;j�
� Kh;a�Tamb;ex ÿ Th;j� (2)

where

j � f1; . . . ; 10g

and

Ttest � Th;j; if the opened valve is below the jth node

Ttest � Tp;4; if the opened valve is at the same level as the jth node

Ttest � Th;jÿ1; if the opened valve is above the jth node

Ccol
dTc

dt
� c0AIT ÿ c1A�Tc ÿ Tamb;ex� � _mCCpc�Tp;2 ÿ Tc�

(3)

Mp;1Cpc
dTp;1

dt
� _mCCpc�Th;10 ÿ Tp;1� � Kp;a�Tamb;in ÿ Tp;1�

Mp;2Cpc
dTp;2

dt
� _mCCpc�Tp;1 ÿ Tp;2� � Kp;a�Tamb;ex ÿ Tp;2�

Mp;3Cpc
dTp;3

dt
� _mCCpc�Tc ÿ Tp;3� � Kp;a�Tamb;ex ÿ Tp;3�

Mp;4Cpc
dTp;4

dt
� _mCCpc�Tp;3 ÿ Tp;4� � Kp;a�Tamb;in ÿ Tp;4�

(4)

All the terms appearing in these equations are defined in the

nomenclature.

3. Segmentation of the auxiliary heater

The auxiliary heater introduced in every SDHWS is

essential to meet the requirements in terms of draw-off.

However, a bad control strategy of this auxiliary heater may

reduce the overall energy bene®t by destroying the strati-

®cation and disabling the two upper valves. This is parti-

cularly true for the system considered, since its mantle heat

exchanger surrounds almost the entire surface of the sto-

Fig. 1. The SDHWS and its division into nodes for modeling.

T. Prud'homme, D. Gillet / Energy and Buildings 1300 (2000) 1±13 3
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rage tank, including the part in which the auxiliary heater

stands. To overcome the drawbacks of such a structure, an

improvement has been designed. This consists of the

replacement of the traditional single electrical element

by three smaller ones with different lengths and can be

seen from the schematic view in Fig. 1 as well as from the

photo in Fig. 2.

Together, these new elements must supply the same power

as the previous one, but may be activated independently

according to both the expected load and the solar radiation.

A combined auxiliary heater as proposed allows a better

control of the amount of heated water in the upper part of the

store and helps to preserve the strati®cation.

4. Predictive control principle

To achieve better overall performances, the controller has

to take advantage of additional information such as the

dynamic model of the system and the a priori knowledge

of the most signi®cant disturbances. In that way, the vari-

ables manipulated (inputs) can be adjusted according to a

predicted behavior of the system until satisfactory perfor-

mances are obtained. The resulting optimal inputs are then

applied to the real plant. The performance level is char-

acterized by an objective function that has to be minimized

using a suitable optimization algorithm. A scheme illustrat-

ing this principle is given in Fig. 3.

The term predictive results from the fact that changes in

the operational conditions are anticipated. For example, it

can be understood intuitively that the auxiliary heaters will

be turned on before each draw-off, thereby providing only

the amount of energy required to satisfy the users' needs. An

excellent review of this control strategy appears in [2]. Other

related works have been done in the area of predictive

control of passive and active solar systems [3±5].

As mentioned above, the performances desired are repre-

sented by an objective function. In this special case, the

objective is twofold: the electrical consumption is mini-

mized whereas the comfort of the users is maximized. The

objective function chosen J, as used to carry out this

optimization, is the following:

J �
Z

one day

f�Pelec ÿ �Psol ÿ Ppump�� � a�Ts;1 ÿ Tset�2g dt

(5)

where Pelec is the electrical consumption of the three aux-

iliary heaters, Psol is the solar energy collected, Ppump the

power required by the pump to drive the fluid in the collector

loop and Ts;1 is the temperature in the upper part of the

storage tank. The parameter a is a trade-off factor and Tset is

the average temperature desired by the users. Tset has been

chosen equal to 55�C. To summarize, this control strategy

aims at minimizing the electrical consumption while keep-

ing the temperature of the water going out from the tank as

close as possible to the chosen Tset. This objective function is

minimized over a 1-day horizon. Ideally, it should be mini-

mized over the whole lifetime of the installation. However,

because of obvious computation limitations, and because of

the time-limited reliability of the weather forecasts, a 1-day

horizon has been chosen. This justifies the fact that Psol is

introduced in this objective function. Indeed, over a long

time, minimizing the electrical consumption or maximizing

the solar energy collected is strictly equivalent. However,

over the horizon chosen, they are not equivalent. Indeed, the

variation of the internal energy is not negligible in a 1-day

energy balance.

At this stage, it should be noted that no penalties have

been added in the cost function to take into account the fact

that electricity may be cheaper during day time than during

the night. This can be done easily by multiplying Pelec in the

cost function by a time-dependent term. In this paper, it is

assumed that the electrical elements can be turned on during

day time without any additional cost.

If P1, P2 and P3 are the power supply of the longest, the

medium and the shortest electrical elements, respectively,

Pelec is described as follows:

Pelec � P1 � P2 � P3 (6)

Fig. 2. The segmented auxiliary heater.

Fig. 3. Predictive control principle.
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Eq. (1). The relation between these two terms is the follow-

ing:X
all i

_Qi � Pelec (7)

Psol is given by

Psol � _mCCpc�Tp;3 ÿ Tp;2� (8)

Ppump is given by

Ppump � K _m3
C (9)

where K is a constant taking into account the pressure losses

in the collector loop and the efficiency of the pump.

The ¯ow rate in the collector loop and the power supply of

each electrical element are manipulated separately in order

to minimize the objective function.

The ¯ow rate can vary continuously between a lower and

an upper bound whereas the power supplies can, depending

on the con®guration chosen, either take only two discrete

values or also vary continuously between bounds. The

optimization has been carried out in both cases to ease

the comparison and justify the ®nal implementation

scheme.

5. Optimization procedure

The optimization algorithm used to minimize the objec-

tive function is quite simple. First, the inputs to be optimized

are parameterized so as to transform the in®nite dimensional

problem into a ®nite dimensional one. There are two kinds of

parameterizations, depending on the type of inputs. If the

input can vary continuously, it is chosen piecewise contin-

uous with a 20 min sampling period. In that case, the values

of the input at each sampling time are optimized. If the input

can take only two discrete values, a ®xed sequence is chosen

and the switching times are optimized. These two parame-

terizations are summarized in Fig. 4. The arrows indicate in

which direction the curves are modi®ed during the optimi-

zation procedure.

Thus, all the inputs are described by a ®nite number of

variables called decision variables. These decision variables

are denoted ai and are grouped together in the vector a. a0

and a� represent the initial and the optimal choice, respec-

tively. The latter is the one minimizing the objective func-

tion.

For conciseness, the 28 differential equations that form

the dynamic model and the objective function given above

are written as follows:

_x � f �x; u; p; v� (10)

J �
Z t0�D

t0

L�x; u; p; v� dt (11)

where x is the state vector containing the 28 temperatures

(state variables) of the model, its elements xi are the state

variables, u is the vector containing the four inputs manipu-

lated (flow rate in the collector loop and the power supply of

the three electrical elements), p the vector containing all the

constant parameters of the model and v the vector containing

all the disturbances (weather forecasts and users' needs in

terms of draw-off).

It is assumed that the optimization procedure is performed

at time t0 and covers a 1-day period (D). The vector p

containing the constant parameters of the model is known,

owing to an adequate identi®cation procedure. All the

disturbances contained in the vector v are estimated over

the horizon H � �t0; t0 � D�, the related estimation proce-

dure is described later. The value of u over H and of x�t0� are

needed to solve numerically the set of differential equations

(Eq. (10)).

Fig. 4. Alternative parameterizations of the inputs.

T. Prud'homme, D. Gillet / Energy and Buildings 1300 (2000) 1±13 5
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completely de®ned by a. Therefore, given x�t0� and a set

of decision variables a, x can be computed over H and, in

the same way, the objective function J can be evaluated.

Finally, if x�t0� is given, from an optimization point of

view, the objective function J can be seen simply as a

function of a.

The dimension of the vector a, which is also the number of

decision variables, is called N. An initial guess a0 for a has to

be chosen to start the optimization. As the optimization

problem is not convex, a0 has to be chosen carefully. Then

the algorithm computes a1, a2, . . . ; ak, which veri®es

J�a0� > J�a1� > J�a2� � � � > J�ak�. The procedure is

stopped when the difference J�ak�1� ÿ J�ak� becomes small

enough.

The algorithm used to perform this optimization is based

on the gradient G of the objective function J versus a. In the

present case, the elements gi of G cannot be computed

analytically. Thus, the perturbation method is chosen to

estimate them numerically:

gi � @J

ai

�ak� � J�ak � eei� ÿ J�ak�
e

(12)

where e is a scalar chosen adequately to discriminate

between cost variation and numerical rounding errors,

and ei the ith vector of the canonical basis of RN .

The algorithm evaluates N � 1 times the objective func-

tion at each step, which means that the set of differential

equations of (10) has to be solved N � 1 times. Therefore, it

may induce a heavy computational load if the number of

decision variables is chosen inadequately.

To avoid the computation of unrealistic values for the

decision variables, such as a ¯ow rate that the pump cannot

afford, upper bounds ai and lower bounds ai of the decision

variables ai are also taken into account.

The way the algorithm implemented handles this type of

constraint follows. If the ith decision variable hits one of its

bound, then the ith element of the gradient of the objective

function is taken as equal to zero. In fact, it is a special case

of the projected gradient algorithm described in detail in [6].

If several variables hit their bound, the gradient is projected

to the intersection of the hyper-planes de®ned by the con-

straints. In our special case, it is the same approach as taking

the corresponding gradients of the objective function equal

to zero.

Once G has been computed, the correction of the decision

variables in the direction speci®ed by the gradient has to be

determined in order to reduce the objective function as much

as possible. This is a one-dimensional problem that can be

solved with the dichotomy, the Fibonacci or the golden

section search. These well-known methods are described

in [6]. The dichotomy method has proved to be suitable for

the SDHWS.

Despite the fact that the decision variables are determined

and can be applied over a 1-day horizon owing to the

approach previously described, the measurements available

can be used to regularly re®ne the optimum estimates. The

feedback mechanism resulting reduces the effect of model

mismatches and unforeseen disturbances. To implement this

feedback mechanism, a state estimator has to provide an

estimate x̂ of x owing to the only eight measurements

available grouped together in y.

The complete feedback mechanism is schematized in

Fig. 5.

6. State estimator based on an extended Kalman filter

The estimator chosen in this work is an extended Kalman

®lter. As a preamble to its description, the discrete linear

Kalman ®lter is reviewed.

The dynamic behavior of the system for which the state

vector has to be estimated is described by Eq. (13). The

output equation is described by Eq. (14).

x�k � 1� � A�k�x�k� � w�k� (13)

y�k� � C�k�x�k� � z�k� (14)

where A�k� and C�k� are known matrices with appropriate

dimensions.

The noises w�k� and z�k� are independent, zero mean,

Gaussian with covariances given by Eqs. (15) and (16).

E�w�k�w�l�� � Q�k�dkl (15)

E�z�k�z�l�� � R�k�dkl (16)

for all k and l, where dkl is the Kronecker delta, which is 1 for

k � l and 0 otherwise.

Suppose that the initial state x0 is a Gaussian random

variable with mean x0 and covariance P0, independent of

w�k� and z�k�. Thus, it can be proven easily that x�k� and

y�k� are Gaussian random variables.

The ®ltering problem is to estimate x�k� using measure-

ments up to k. This reduces to the computation of the

sequence E�x�k�jy�0�; y�1�; . . . ; y�k�� for k � 0; 1; 2; . . ..
This quantity is called x̂kjk. It implies the computation of

the quantity E�x�k�jy�0�; y�1�; . . . ; y�k ÿ 1�� for k � 0; 1; . . ..
This quantity is denoted x̂kjkÿ1. The associated covariance

matrices Skjk and Skjkÿ1 must also be calculated.

Fig. 5. Scheme of the feedback mechanism.
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proven that it is also the minimum variance estimate and

the conditional minimum variance estimate, at least with this

linear discrete system and with the assumptions on the

noises aforementioned.

The solution of this ®ltering problem is now given. The

proofs can be found in [7].

� Measurement-update equations:

x̂kjk � x̂kjkÿ1 � K�K��y�k� ÿ C�k�x̂kjkÿ1� (17)

K�k� � Skjkÿ1CT�k��C�k�Skjkÿ1CT�k� � R�k��ÿ1
(18)

The matrix K�k� is called the gain of the Kalman filter.

Skjk � �I ÿ K�k�C�k��Skjkÿ1 (19)

� Time-update equations:

x̂k�1jk � A�k�x̂kjk (20)

Sk�1jk � A�k�SkjkAT�k� � Q�k� (21)

� Initial conditions:

x̂k0jk0ÿ1 � x0 (22)

Sk0jk0ÿ1 � P0 (23)

These equations can be implemented easily. The main

dif®culty related to this ®lter lies in the fact that a lot of

parameters must be chosen. The matrix R de®nes the quality

of the measurements. This matrix is often chosen diagonal.

If the ith measurement is good, the ith element of the

diagonal of R must be small. The Q matrix is also chosen

diagonal, each element of this diagonal de®nes the quality of

the corresponding differential equation. For example, if it is

clear that the ith equation is very close to reality then the ith

element of the diagonal of Q must be small. The opposite is

true. x0 is roughly evaluated owing to the measurements

taken at k0, and P0 is chosen diagonal. The elements of this

diagonal are the tuning parameters for the ®lter convergence.

As mentioned above, an extended version of the Kalman

®lter has to be used for the SDHWS. The differential

equations of the model of the system are neither linear

nor discrete. They are given by

_x�t� � f �x�t�; u�t�; p; v�t�� � w�t� (24)

The output equation is still linear and given by

y�tk� � Cx�tk� � z�tk� (25)

This equation shows that the measurements are taken at

discrete times tk, every 10 min in our special case.

The assumptions on the noises w and z are the same as in

the linear-discrete case.

This model must be linearized around a nominal trajec-

tory which is not known in advance. The solution is called

the prediction-correction method. The nominal state

x � x̂�tjtk� in the interval �tk; tk�1� is obtained by integrating

numerically the following system of non-linear differential

equations:

x�tjtk� � f �x̂�tjtk�; u�t�; p; v�t�� (26)

Thus, from tk to tk�1, starting from the initial condition

x̂�tkjtk�, this numerical integration provides x̂�tk�1; tk�. From

this, the nominal trajectory of the output is obtained easily

owing to

y�tk�1; tk� � Cx̂�tk�1; tk� (27)

Given the nominal trajectory, the Jacobian matrix can be

computed the following way:

F�tjtk� � F�x̂�tjtk�; u�t�; v�t�� � df �x�t�; u�t�; p; v�t��
dx

����
x�x̂�tjtk�

(28)

The equations of the extended Kalman filter are given by

� Measurement-update equations (correction):

K�tk� � S�tkjtkÿ1�CT�CS�tkjtkÿ1�CT � R��ÿ1
(29)

x̂�tkjtk� � x̂�tkjtkÿ1� � K�tk��y�tk� ÿ Cx̂�tkjtkÿ1�� (30)

S�tkjtk� � �I ÿ K�tk�C�S�tkjtkÿ1� (31)

� Time-update equations (prediction):

_̂x � f �x̂�tjtk�; u�t�; p; v�t�� (32)

_S�tjtk� � F�x̂�tjtk�; u�t�; v�t��S�tjtk�
� S�tjtk�FT�x̂�tjtk�; u�t�; v�t�� � Q (33)

� Initial conditions:

x̂�t1jt0� � x0 (34)

S�t1jt0� � P0 (35)

Time-update equations are numerically solved from tk to

tk�1. The parameters of this filter are the same as in the

linear-discrete case and are tuned in the same way.

The prediction is computed each time new measurements

are taken, every 10 min. The optimization procedure could

also be repeated every 10 min if there is enough time.

However, in our special case, the optimization is not per-

formed so often. The innovation sequence Inov�tk� is used to

decide whether a new optimization should be performed. It

is de®ned as follows:

Inov�tk� � x̂�tkjtk� ÿ x̂�tkjtkÿ1� (36)

Usually, all the elements of the vector Inov�tk� are small. If

one of them is bigger than a predefined constant, it means

that either the model has failed to predict the behavior of the

SDHWS or the disturbances (weather data or users' needs in

terms of draw-off) have been badly estimated. In both cases,

the optimization has to be performed to tackle this problem.

In our special case, Inov�tk� is a 28-dimensional vector,

and its elements represent a difference of temperatures for a

T. Prud'homme, D. Gillet / Energy and Buildings 1300 (2000) 1±13 7
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each time one of the element of Inov�tk� is greater than a few

degrees Kelvin (or Celsius).

7. Weather forecasts and prediction of the users'
needs

It is obvious that the model is not suf®cient to predict the

behavior of the SDHWS. The solar radiation, the ambient

temperature around the collector and the users' needs in

terms of draw-off must be predicted. The temperature of the

water at the input of the storage tank as well as the ambient

temperature around the storage tank does not have to be

predicted. Their in¯uence is not signi®cant and they can be

chosen constant over H.

As for the weather forecasts, stochastic models can be

built [8]. However, the Swiss Meteorological Institute

(SMI) is able to provide via e-mail accurate 2-day forecasts.

An advanced model is used to compute these forecasts. It

describes all of the relevant atmospheric phenomena at

different scales, like storms, wind, rain, high clouds, snow,

etc. Obviously, we could not have afforded to create such a

huge model ourselves because of computational limita-

tions.

With regards to the users' needs in terms of draw-off, the

tapped water predicted for each day of the week is the

average of the corresponding day over the last two months.

This prediction is updated every day at midnight.

The main problem is the fact that a ¯ow meter is too

expensive to consider for measuring the ¯ow rate of the

tapped water. Therefore, the extended Kalman ®lter

described in the previous section is also used to ful®ll this

task.

For that purpose, the dimension of the state vector x is

increased by one. This new state vector is called xc. The new

element is the disturbance that has to be estimated. In this

case, it is the ¯ow rate of the tapped water _mL. Below, it

matches the ith disturbance vi. To apply the equations of the

extended Kalman ®lter, the dynamics of this disturbance vi is

de®ned as

dvi

dt
�t� � fvi

vi�t� � nvi
�t� (37)

Thus, this differential equation together with the 28 others of

the model of the SDHWS lead to the following general

representation:

_xc�t� � fc�xc�t; u�t�; p; v�t�� � wc�t� (38)

The dimension of the vector w has also been increased by

one. The 28 first elements of the vector wc correspond to the

elements of w. The last element is nvi
. The assumptions on

this new element are the same as the others. The output

equation remains unchanged. With this new model, the

procedure used is exactly the same as the one described

for the extended Kalman filter in the previous section (just

replace x by xc and adapt the dimensions of the various

functions accordingly).

There are some new parameters that have to be de®ned to

make this ®lter work properly. First, the dynamics of the

estimated disturbance fvi
must be de®ned. In fact, the

dynamics of this disturbance is not known in advance. It

is chosen to equal zero. However, owing to the noise nvi
,

it can be indicated easily to the ®lter that this dynamics is

not known. This is done by choosing a high value for

the corresponding term in the diagonal of the covariance

matrix Q.

Finally, initial conditions for this disturbance vi and its

covariance are given. Both are taken as equal to zero.

A ¯ow meter has been installed in a pilot plant to compare

the ¯ow rate measured with the one estimated by the ®lter. A

typical result for this comparison is shown in Fig. 6. The

®lter has no a priori knowledge of the tapped-water pro®le

we have imposed. The pro®le chosen is standardized to

validate the SDHWS. Even if its shape may be different from

a measured one, it exhibits all the discontinuities necessary

to validate the ®lter.

Therefore, the users' needs in terms of draw-off are well

evaluated on-line owing to this ®lter. As mentioned above,

this estimation is used at the end of the day to update the

prediction used in the optimization procedure.

8. Control strategies validation

This section presents simulation results that illustrate the

performances of the various strategies applied to control a

modi®ed or a conventional SDHWS.

Comparison criteria have to be de®ned to assess the

energy performance improvement of this advanced control

strategy coupled to the segmented auxiliary heater. The

energy balance of the SDHWS is given by

Eelec � Esol � Eload � Eamb � DE (39)

with

Eelec �
Z

B

Pelec dt �
Z

B

�P1 � P2 � P3� dt (40)

Esol �
Z

B

Psol dt �
Z

B

_mCCpc�Tp;3 ÿ Tp;2� dt (41)

Eload �
Z

B

_mLCpf�Ts;1 ÿ Tin� dt (42)

The horizon B over which these integrals are specified is the

horizon chosen to compare the two configurations.

Eelec is the electrical energy consumed and Esol is the solar

energy gathered. Eload, Eamb and DE are the energy tapped by

the users, the ambient energy loss and the variation of the

internal energy of the SDHWS, respectively. This last term

depends on the temperature variation of the 28 nodes over

the B horizon.
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Two criteria F1 and F2 have been chosen. They are often

referred to as the solar fraction:

F1 � Esol

Eload � Eamb

� Esol

Esol � Eelec ÿ DE
(43)

F2 � Esol

Eload

� Esol

Esol � Eelec ÿ DE ÿ Eamb

(44)

F1 is obviously lower than F2. F1 penalizes the strategies

that lead to a great amount of ambient energy loss. There-

fore, even if F2 is used commonly, it seems that F1 is more

representative of the quality of a configuration.

The ®rst part of this section justi®es the choice of an on±

off power supply for the modi®ed SDHWS that integrates a

segmented auxiliary heater.

With this choice, the second part of the section quanti®es

the bene®t of such a modi®ed SDHWS compared to the

traditional one that integrates a unique auxiliary heater. The

energy performance improvements presented in this section

suppose that there are no model mismatches and that the

disturbances are perfectly predicted. In a real situation, these

conditions may not be well satis®ed. The implications of the

resulting discrepancies in the users' behavior and in the

weather forecasts will be discussed in Section 9.

8.1. Power supply alternative for the modified SDHWS

First, it is assumed that the electrical elements can be

supplied continuously. The long, the medium, and the short

electrical element can afford power supplies of 1.5, 1.0, and

0.5 kW, respectively. Thus, all of the inputs are chosen

piecewise continuous functions with a period equal to

two times the sampling rate. This leads to 288 decision

variables over a 1-day horizon (4 inputs times 72 decision

variables per input).

Curves in Fig. 7 exhibit the pro®les of the solar radiation

chosen to carry out the simulation and the corresponding

optimal ¯ow rate provided by the optimization procedure.

In Fig. 8, the pro®le of the water tapped and the corre-

sponding continuous optimal power supply of each electrical

element are shown. Owing to the predictive behavior of the

controller, the auxiliary heaters are used mainly just before

water is tapped. In this simulation, the amount of water

tapped is low. Thus, the longest electrical element is almost

never used. This proves the bene®t of the segmented aux-

iliary heater.

These results also suggest that it may not be necessary to

power continuously the auxiliary heaters. The shape of the

continuous optimal solution is close to an on±off sequence.

Thus, a sub-optimal solution can be obtained with less

computational load by looking for an on±off sequence with

a prede®ned number of switching times. The simulation has

been carried out and the results are shown in Fig. 9.

The general behavior is almost the same, the auxiliary

heaters are turned on just before the water is tapped and the

third electrical element is not used. All the elements of the

energy balance previously de®ned have been computed for

the 1-day period considered and can be seen in Table 1. In

terms of solar fraction, the performances are approximately

the same in both the continuous and on±off cases.

Fig. 6. Comparison between measured and estimated tapped water.
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Temperature pro®les inside the storage tank are shown in

Fig. 10. The degree of comfort is very high in both cases,

since the temperature in the upper part of the storage tank

stays close to the set temperature Tset of 55�C.

8.2. Advanced control strategy versus conventional one

From now on, it is considered that an on±off power supply

of the auxiliary heaters is implemented.

The conventional strategy for the SDHWS under con-

sideration is the following:

P1 � 0

P2 � 0

P3 � 3:0 kW if�M1 �M2 �M3� < 55�C
P3 � 0:0 kW if�M1 �M2 �M3� > 55�C

P1 and P2 are equal to zero because there is only the largest

electrical element in the conventional configuration. It can

afford a 3.0 kW power supply. It corresponds to the same

total power affordable as the configuration with the seg-

mented auxiliary heater. M1, M2 and M3 are the three

temperature measurements located in the upper part of

the storage tank (see Fig 1). The set temperature for this

conventional strategy has been chosen 55�C in order to ease

the comparison with our advanced control strategy and its

Tset, also equal to 55�C.

The simulation has been carried out over a 28-day

horizon. It is enough to reduce the in¯uence of the varia-

tion of the internal energy and also enough to cover a

wide spectrum of operational conditions (weather

data and users' needs in terms of draw-off). For concise-

ness, pro®les of the water tapped and meteorological

Fig. 7. Solar radiation and optimal flow rate.

Fig. 8. Tapped water and continuous optimal power supply of each auxiliary heater.
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data are not given. They are identical for the two con®g-

urations.

On the left-hand side of Fig. 11, the temperatures of the 13

nodes of the SDHWS model for the 28th day resulting from

the new con®guration are shown. On the right-hand side, the

temperatures for the same day resulting from the conven-

tional con®guration are shown.

All the elements of the energy balance have been

computed for the 28-day period and are shown in

Table 2.

Fig. 9. Tapped water and on±off optimal power supply of each auxiliary heater.

Table 1

Comparison between continuous and on±off power supply in terms of energy performances

Continuous power supply On±off power supply Variation (%)

Eelec (kJ) 3.69e4 3.73e4 �1.08

Esol (kJ) 2.63e4 2.63e4 0.00

Eamb (kJ) 6.57e3 6.79e3 �3.3

DE (kJ) 1.53e3 1.71e3 ÿ11.76

Eload (kJ) 5.51e4 5.51e4 0.00

F1 (%) 42.64 42.49 �0.35

F2 (%) 47.73 47.73 0.00

Fig. 10. Left: continuous power supply; right: on±off power supply.

T. Prud'homme, D. Gillet / Energy and Buildings 1300 (2000) 1±13 11
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From the conventional con®guration compared to the new

one, Eelec has been reduced by 10.0%. This decrease is due to

both a decrease of Eamb and an increase of Esol. It results

from the fact that the mean temperature inside the storage

tank is lower in the new con®guration. This can be seen

clearly in Fig. 11. It should be noted that the mean tem-

perature in the conventional con®guration is highly depen-

dent on the chosen Tset. The value chosen to carry out these

simulations is the same for the two con®gurations. However,

in the current practice, the value chosen is higher than 55�C
for the conventional control strategy. Indeed, the tempera-

ture in the storage tank has to be high enough to prevent the

biggest peak of tapped water with the worst weather. With

the advanced control strategy proposed, a lower Tset can be

afforded because estimations of the users' needs and fore-

casts of the most signi®cant weather data are taken into

account explicitly. Thus, it gives the anticipation effect

necessary allowing a lower mean temperature in the storage

tank.

9. Concluding remarks

An advanced control strategy coupled with a segmented

auxiliary heater have led to a signi®cant increase of the solar

fraction and a higher degree of comfort. Electrical elements

do not have to be continuously powered. Moreover, an on±

off control strategy is also more suitable from a computa-

tional point of view. Indeed, this optimization can be

achieved in a fraction of the 10 min sampling period.

However, as already mentioned, these are simulation

results. In practice, they would be dependent on the quality

of the disturbances' estimates. However, this problem is

partly tackled by the fact that the optimization is repeated

Fig. 11. Left: new configuration; right: conventional configuration

Table 2

Energy balances

Conventional configuration New configuration Variation (%)

Eelec (kJ) 1.02e6 9.17e5 ÿ10.5

Esol (kJ) 7.36e5 7.76e5 �5.50

Eamb (kJ) 1.88e5 1.33e5 ÿ29.4

DE (kJ) 2.43e4 1.23e4 ÿ49.6

Eload (kJ) 1.55e6 1.55e6 0.00

F1 (%) 42.4 46.2 �8.94

F2 (%) 47.5 50.1 �5.47
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able, the state estimator computes new initial conditions for

the optimization algorithm which is therefore able to provide

updated optimal inputs. It will fail only in the case of real

disturbances very different from their estimates. In that case,

another degree of robustness is necessary. For example,

rather than keeping only the temperature of the highest

node in the storage tank close to Tset, it may be speci®ed

to the optimizer to keep the temperature of two or more

nodes in the storage tank close to this same Tset. It would

assure a given amount of energy in reserve in case of under-

estimated draw-off or over-estimated solar radiation. Thus,

the objective function would be:

J �
Z

one day

f�Pelec ÿ �Psol ÿ Ppump�� � a1�Ts;1 ÿ Tset�2

� a2�Ts;2 ÿ Tset�2g dt

To conclude, the control strategy has to be conservative

enough depending on the quality of the estimates. On one

hand, if the estimates are very good, the control strategy

would not be too conservative and the energy performances

will be excellent. On the other hand, if no a priori knowledge

of these disturbances is available, it will be difficult to get

better performances than the conventional control strategy.

As for commercial applications, it may be dif®cult to

consider getting information such as weather forecasts at

every SDHWS because it requires communication capabil-

ities. Moreover, the advanced control strategy is based on the

solving of a complex optimization problem that necessitates

signi®cant computation capabilities. However, there is no

doubt that these two points won't be problematic in the near

future and the energetic bene®ts induced by the new con-

®guration will fully justify the price of the modi®cations.
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