

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN Ufficio federale dell'energia UFE Swiss Federal Office of Energy SFOE

HOW TO GET RID OF THE REST?

THE ROLE OF CCUS/NET IN DECARBONIZATION

Valentin Gischig - Representative to the ExCo of the IEA Greenhouse Gas TCP IEA Networking day, 19 May 2022

GLOBAL PERSPECTIVE ON CO₂-REDUCTION

Global total net CO2 emissions

IPCC, 2018

Figure 2.4 Global CO₂ emissions and capture across the energy system in the Sustainable Development Scenario, 2019-70

IEA 2020. All rights reserved.

Note: CO₂ emissions include both energy-related and process emissions.

BECCS and DACS enable the global energy system to reach net-zero emissions by 2070 in the Sustainable Development Scenario.

IEA ETP 2020, Special Report on Carbon Capture, Utilisation and Storage

WHAT ARE OUR OPTIONS?

CCUS - Carbon Capture, Utilization and Storage

Es wird davon ausgegangen, dass die verwendete Energie klimafreundlich gewonnen wurde.

Negative Emissionen

Klimaneutralität

CO2-Emissionen

SWISS PERSPECTIVES ON CO₂-REDUCTION

Development of GHG emissions without CCS and CO₂ removal between 1990 and 2050 in Switzerland

Quelle: Szenarienrechnung Energieperspektiven, Szenario ZERO Basis, THG nach IPCC-Abgrenzung, Verkehr ohne internationalen Luftverkehr © Prognos AG / TEP Energy GmbH / INFRAS AG 2021

GHG Emissions with CCS and CO₂-removal in Switzerland

Quelle: Szenarienrechnung Energieperspektiven 2050+, Szenario ZERO Basis, THG nach IPCC-Abgrenzung, Verkehr ohne internationalen Luftverkehr © Prognos AG / TEP Energy GmbH / INFRAS AG 2021

Transport and storage abroad (e.g. Iceland or Northern Lights) is necessary (see also P+D projects DemoUpCarma and DemoUpStorage)

GLOBAL CCS PROGRESS

"Carbon capture in 2021: Off and running or another false start?" IEA blog

But still: currently 40 MtCO₂/year being stored, but 1 – 10 GtCO₂/year required by 2050!!

IEA 2020. All rights reserved.

THE IEA GREENHOUSE GAS TCP

ELECTRICAS

IEAGHG is part of the working party on fossil energy

Significant

industry

participation

of oil and gas

IEAGHG ACTIVITIES

- Operating agent consisting of 10 exployees «runs the show»
- Organizes Greenhouse Gas Technology Conference every second year.
 Next GHGT-16 in Lyon, France 23 27 October 2022
- Organizes Post Combustion Capture Conference (PCCC) every alterating year.
 Next one PCCC-7 in Pittsburgh, USA, 2nd half of 2023
- Organizes CCS Summer Schools
 Next one in Bandung, Indonesia, 27 November 4 December 2022
- Various webinars throught each year
- Contributes expertise on CCS/NET to IPCC reports
- 1th March 2022 joint virtual workshop with IEGHG and IETS TCP
- Many reports are comissioned every year on topics proposed and voted on by members.

EXAMPLE STUDY: COSTS OF DACCS

CO2

utilisation

Flexible

operation

- Given the limited potential of all NET approaches (e.g. Bioenergy is limited through the available biomass, potential conflicts with food productions, etc.), Direct Air Capture will have to play a role as a «last resort» technology
- Current estimates of the future costs are very uncertain (100 1000\$/tCO₂ in literature, EP2050+ 900 CHF/tCO₂ in 2020, 300 CHF/tCO₂ in 2050).
- To this end, IEAGHG comissioned a study providing site- and context-specific cost estimates

EXAMPLE STUDY: COSTS OF DACCS (by ElementEnergy)

Only under very optimistic assumptions can DACCS costs fall below the 100\$/tCO₂

Case	1- Early Hybrid	2- Small Plant	3- Base Electric	4- Low-Cost Adsorbent	5- Low-Cost Electricity	6- Low-Cost Energy Hybrid	7- Very Ambitious
Timeline	FOAK 2020s	NOAK 2050s					
Technology	Hybrid	Hybrid	Electric	Electric	Electric	Hybrid	Electric
Capex, Fixed Opex, Consumables	Base Case- Early Plant	Base Case- 100kt/vr Plant	Base Case	Low Sorbent Cost	Base Case	Base Case	Low Sorbent Cost & High Learning Rate
Electricity Source	Solar PV – Base Case (\$68/MWh)	Solar PV – Base Case (\$50/MWh)	Solar PV – Base Case (\$50/MWh)	Solar PV – Low (\$50/MWh)	Solar PV – Low (\$14/MWh)	Solar PV – Low (\$14/MWh)	Solar PV – Low (\$14/MWh)
Heat Source	Nuclear (\$19/MWh)	Nuclear (\$19/MWh)	-	-	-	Free Waste Heat	74.
CO ₂ T&S	Base Case (\$22/tCO ₂)	In Cluster (\$5/tCO ₂)					
Cost of Capital	10%	5%	5%	5%	5%	5%	3%

ROLE OF CCUS

"Carbon dioxide removal (CDR) is not an alternative to cutting emissions or an excuse for delaying action, but is part of a comprehensive strategy for "net" zero — where emissions being released are ultimately balanced with emissions removed." IEA Report on DAC, 2022

- CCS is a key technology for decarbonization of hard-to-abate emissions (cement, chemicals, long-distance transport, waste incineration, steel etc.)
- Carbon dioxide removal / Negative emission technologies are essential components for reaching net zero goals. They are part of the solution portfolio.
- CCS is a key technology for decarbonization of existing **«young» assets:** around a third of existing coal and gas-fired power capacity worldwide was added over the last decade. Turning them off pre-maturely would have very expensive socioeconomic consequences.
- Yes, it may be a commercial opportunity for oil and gas industry, but they are indispensable players, because they have long-standing experience for capture, transport and storage.

CCS / NET: AN INHERENTLY COMPLEX AND MULTIDISCIPLINARY FIELD

- The challenge of CCS (NET) is that it involves a wide range of processes: Capture (various applications), Transport, Use (various applications), Storage
- Given the multidisciplinary nature there are various interfaces with other IEA TCPs: bioenergy, advanced motor fuels, hydrogen, clean and efficient combustion, industrial energy-related technologies and systems, (Geothermics), etc.
- IEAGHG is a splendid resource for information related to all CCUS options and the entire process chain
- SFOE funds CCS/NET through R&D programs, P&D program (e.g. DemoUpCarma) and the upcoming SWEET call on NET opening early 2024

Please get into contact for specific information!

LATEST IEAGHG REPORTS

Title	Contractor	Report number	Publication date	Title	Author	Report number	Publication date
CO ₂ as a Feedstock: Comparison of CCU Pathways	Element Energy	2021-02	23/11/21	Current State of Knowledge Regarding the Risk of Induced Seismicity at CO ₂ Storage Projects	BEG, UoTX	2022-02	01/02/22
CO ₂ Utilisation: Hydrogenation Pathways	Element Energy	2021-03	16/11/2021	Prime Solvent Candidates for Next Generation of PCC Plants	Khalifa University	2022-03	28/02/2022
Techno-economic Performance, Opportunities, and Challenges of NETs	Imperial Consultants (ICON)	2021-04	02/02/22	From CO ₂ to Building Materials - Improving Process Efficiency	Imperial Consultants (ICON)	2022-04	02/03/2022
Global Assessment of DAC	Element Energy	2021-05	19/01/22	Feasibility Study on Achieving Deep Decarbonization in Worldwide Fertilizer Production	Wood (Italy)	2022-05	03/03/2022
Criteria for Depleted Reservoirs to be Developed for CO ₂ Storage	BEG, UoTX	2022-01	17/01/22	PCCC6 6 th Post Combustion Capture Conference Summary 19-21 October 2021	Keith Burnard / Abdul'Aziz Aliyu		14/03/22

- Example of upcoming reports:
- Monitoring, Reporting and Verification (MRV) for Greenhouse Gas Removals (GGR)
- Consequences of CO₂ Migration to the Surface or the Shallow Subsurface

GLOBAL STORAGE POTENTIAL

https://doi.org/10.3389/fclim.2019.00009

Potential storage:

- Saline aquifers
- Depleted gas reservoirs
- Basaltic/ultramafic formations

In CH: total storage volume estimated to by 50 MtCO₂

BUT THIS VERY UNCERTAIN!!!

CO₂ sequestration facilities, projects, and opportunities

Large scale facilities

- completed (1)
- operating (5)
- future (15)

Pilot projects

- completed (15)
- operating (7)
- future (6)

CO₂ sequestration

Highly prospective sedimentary reservoirs

Ultramafic formations