Clean and Efficient Combustion

Hydrogen and other low-carbon fuels

Yuri M. Wright – IEA combustion TCP

IEA Networking event, Berne

May 24th 2022

Outline

Clean and Efficient Combustion

The relevance of combustion – now and in the future Renewable fuels: which options for which sectors Challenges for combustion research and the TCP

- Multi-scale physics in IC engines, but also gas turbines and solid fuels!
- Diagnostics, modelling and understanding imperative for advances
- Aside CO2 and other GHG (CH4 etc.), emissions a persistent topic
- How to translate insights to policy messages? → systems analysis/cross-cutting tasks
- Opportunities for interaction with other TCPs

Conclusions

Combustion – quo vadis?

Clean and Efficient Combustion

Energy demand and GHG emissions – breakdown by sectors in Switzerland

• 36% energy demand for transportation

- CO₂ reductions apparent in some sectors
 - Buildings: heat pumps, insulation, BIM, ...
 - Transport remains an issue (still largely fossil)
 - Power (co-) generation needs chem. energy carriers, too!

— Traffic (w/o international air traffic) — Industry (w/o incineration)

-Building (residential) ——Agriculture

Buildings (for services) — Waste treatment

——Synthetic gases

Source: FOEN 2021

The CO2 budget – global and national Clean and Efficient Combustion

1990	1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
------	------	------	------	------	------	------	------	------	------	------	------	------

Reference: BAFU (2019): «Entwicklung der Treibhausgasemissionen der Schweiz seit 1990», IPCC (2018): «Global warming of 1.5°C.", Alle Zahlen inklusive internationalem Flug- und Schiffsverkehr (und ohne IPCC-Subsektoren 4 (LULUCF) und 6 (Others))

Target	World	Switzerland			
2.0°C (66%)	1170 Gt CO ₂	1290 Mt CO ₂			
1.5°C (66%)	420 Gt CO ₂	460 Mt CO ₂			
	Per-capita distribution				

Discrepancy between the resolution of the Federal Council and the 1.5°C target

	CO ₂ emissions* (2018-2050)	Net zero
2.0°C (66%)	1290 Mt CO ₂	~2076
Fed. Council	700 Mt CO ₂	2050
1.5°C (66%)	460 Mt CO ₂	~2038

^{*)} Figures are based on the assumption of a linear decrease in emissions between 2018 and 2050, see graph on the left.

Renewable fuels – some options

Clean and Efficient Combustion

Production efficiency (renewable electricity + DAC)

- Hydrogen and short-chain HC fuels highly beneficial
- Liquid "drop-in" fuels \rightarrow aviation and shipping (existing assets with long fleet replacement times)

Distribution infrastructure

- Hydrogen ??? → fuel cell or ICE?
- rLNG, rDME, rNH3: use established LNG framework
- rMeOH ideal "short-chain" liquid candidate
- Longer-chain liquids: OME, (FT-)Diesel, Jet-X

Handling issues

- Toxicity, ease of refueling, compatibility with engine components
- volatility, reactivity (flame speed, ignition propensity)

e-fuel	efficiency
cgH2 LH2	0.56-0.60 0.48-0.55
NH3	0.49-0.55
MeOH	0.41-0.48
LNG	0.43-0.46
DME OME3-5	0.45-0.48 0.33-0.36
Diesel (FT) Via MeOH	0.33 0.37

Held, PhD thesis ETH Zurich Held et al., Energy Environ. Sci., 2019 Stolz, Held et al, Nature Energy 2022

Combustion – fundamental challenges Clean and Efficient Combustion

How to evolve the combustion TCP? Clean and Efficient Combustion

Combustion physics to systems level

Clean and Efficient Combustion

System Analysis Task

High level energy systems Engine systems (powertrain-fuel specific) (regional, national, global) **ETSAP - TIMES** Research and development of clean combustion technologies Characterization of new technologies powered by renewable fuels using bio or e-fuels or NH3 (as ecarrier) in aviation, shipping and on-road transport Experimental and simulation Hydrogen turbines: understanding based end-use performance and costs, efficiencies, ramping flexibility, emissions evaluation and hydrogen quality requirements Co-firing of H2 in stationary Development of engine maps combustion technologies Autonomie **GREET** Data-driven modelling and TTW of carbon emissions from simulation (EUA tool) H2-ICEs. Improving performance, refining the load-speed efficiency Global figures of performance maps, minimize the usage of precious and emissions metals in aftertreatment systems

GREET+

- Striving to inform and improve comparisons of fuels and technologies in a well-to-wheel perspective across transportrelated TCPs.
- Technological expertise from the TCPs will be used in
 - Regionalization beyond the U.S.
 - Integration of new fuel cycle / vehicle cycle pathways
- Results shall inform
 - System analyses in the TCPs
 - IEA scenario modelling

Interactions with other TCPs

Clean and Efficient Combustion

Conclusions

Clean and Efficient Combustion

- Overarching goals
 - Net zero CO2 by 2050
 - Electrification wherever possible *undisputable*
 - Various sectors will nonetheless need to rely on combustion
 - Technology neutrality important and "bang for the buck" should be kept in mind
 - Security of supply: seasonal availability of renewables (and current geopolitical considerations!)
 - Long-term storage options essential in this respect → chemical energy carriers, CHP, ...

Implications

- Synthetic (net) zero carbon fuels at scale required
- Understanding combustion physics of H2 and low-/net zero carbon fuels mandatory
- Evolve task to reflect changes in fuels availability, technology, regulations, energy security
- Improve interactions with other TCPs and EUWP

Gas engine collaborative Task

Clean and Efficient Combustion

Thank you!

