# Heat pump integration and application in nearly Zero Energy Buildings (nZEB)

BFE IEA Networking Event Switzerland, May 24, 2022, Eventforum, Berne



<u>Carsten Wemhöner</u> IET Institute of Energy Technology, OST – Eastern Switzerland Univ. of Appl. Sciences



# **Motivation**

- Nearly Zero Energy Buildings (nZEB) are the global future building standard
- In the USA and Canada as well as in China and Japan nZEB will be introduced between 2020 - 2030
- Since Jan 1, 2021, all new buildings in the EU have to comply with nZEB requirements
  - Despite different harmonisation initiatives, different national implementations in the member states leading to different ambition levels
  - In Switzerland implemented by MuKEn 2014
- Building technology to reach nZEB is of particular interest
  - Heat pumps are already well established as building technology for nZEB
  - nZEB can become a market driver for heat pumps



## **Research in IEA HPT Annex 49**

• 8 participating countries, 16 institutions

AT I BE CH I DE NO SE SE KUK US

- State of the art of nZEB in participating countries
  - Definition and ambition level of nZEB
- Integration of multi-functional heat pumps in nZEB
  - · Integration with storages, solar components and the ground
- Monitoring of marketable/prototype heat pumps in nZEB
  - Focus on larger residential and non-residential nZEB with heat pump
- Design and control of heat pump systems for nZEB
  - Increase of self-consumption and energy flexibility



## **State of nZEB implementation**

- Methodology to compare nZEB ambition level
  - Elaborated by AT, CH and DE
  - Method based on building and system simulation
  - Test for a single family house (based on Reference framework of IEA HPT Annex 38/SHC Task 44)
  - Implementation of building based on national nZEB rating and transformation to common boundary conditions
  - Relative comparison of ambition levels possible
  - Current limitations
    - limited countries tested (AT, CH, DE, IT, SE)
    - Single family building use
    - A-W heat pump heating and DHW system









## State of nZEB implementation

- **Results for** monthly electric energy consumption with air-to-water HP
- Comparison to a passive house in the same location and same boundary conditions (DHW demand, internal loads etc.)
- In IT Rome, cooling demand in summer



ederazione Svizzera

Swiss Federal Office of Energy SFOE



## State of nZEB implementation

- Results for net electric energy consumption
  - IT and CH set additional requirements for on-site renewable energy production

| Energies<br>[kWh/m²/yr] | National<br>nZEB | On-site<br>PV yield | Net<br>balance |
|-------------------------|------------------|---------------------|----------------|
| Country/<br>regulation  |                  |                     |                |
| AT OIB 6 Innsbruck      | 26.0             | 0                   | 26.0           |
| CH MuKEn Zurich         | 18.3             | 14.9                | 3.4            |
| DE EnEV Potsdam         | 42.0             | 0                   | 42.0           |
| DE KfW55 Potsdam        | 26.1             | 0                   | 26.1           |
| SE BBR Stockholm        | 26.7             | 0                   | 26.7           |
| IT DM 2015 Bolzano      | 15.8             | 18.8                | -3.0           |
| IT DM 2015 Rome         | 16.3             | 17.0                | -0.7           |



Schweizerische Eidgenossenschaft Confédération suisse

Swiss Federal Office of Energy SFOE

federazione Svizzera



## **State of nZEB implementation - Conclusions**

#### Methodology to compare nZEB ambition level

- Different nZEB implementations and ambition levels among EU member states
- EU cost optimality guideline (2012) and recommendation (2016) set reasonably ambitious nZEB targets for the new built sector
- Some national nZEB implementations do not meet EU recommendations and cost optimal levels
- Developed methodology enables a relative comparison based on building/system simulation to enhance transparency
- Results can be used to further develop requirements and enhance ambition levels

| Site | nZEB | EU   | $\Delta$ [%] | Net  | EU   | $\Delta$ [%] |
|------|------|------|--------------|------|------|--------------|
| AT   | 70   | 57.5 | 122          | 70   | 22.5 | 311          |
| CH   | 51   | 57.5 | 89           | 13.5 | 22.5 | 60           |
| DE E | 110  | 57.5 | 191          | 110  | 22.5 | 489          |
| DE K | 70   | 57.5 | 122          | 70   | 22.5 | 311          |
| SE   | 72   | 77.5 | 93           | 72   | 52.5 | 137          |
| IT B | 45   | 60   | 75           | -2.5 | 30   | -108         |
| IT R | 46   | 57.5 | 80           | 3.2  | 7.5  | 43           |

Legend:  $DE \ E - DE \ EnEV$ ,  $DE \ K - DE \ KfW55$ ,  $IT \ B$ Italy Bolzano,  $IT \ R - Italy \ Rome$ ,  $\Delta$  - percent deviation,  $nZEB - energy \ demand \ national \ nZEB$ ,  $net - Net \ balance$ national nZEB, EU - EU recommandation benchmark

iss Federal Office of Energy SFOE



# **nZEB Monitoring and Simulation**

- Single family building Berghalde, Stuttgart-Leonberg
  - 260 m<sup>2</sup>, 4 inhabitants, Plus-energy house of initiative "Effizienzhaus Plus"
  - Building envelope on passive house level
  - 10 kW ground-coupled heat pump,
    3 boreholes of 100 m each
  - Mechanical ventilation with 85% heat recovery efficiency and 80 m ground-to-air heat exchanger
  - Whole roof covered with 15.3  $kW_{\rm p}$  solar PV system
  - 825 I thermal buffer storage and 7 27 kWh electric battery
- 6 years of Monitoring











## **nZEB Monitoring and Simulation**

- Plus energy balance could be confirmed for each year of the measurements
  - High heat pump performance in the range of an SPF of 5
  - Additional investigations for load management options with control and storage integration





## **nZEB Monitoring and Simulation**

- Load management by
  - Night-time setback control
  - PV control strategy
  - Buffer storage expansion
  - Electric battery
- Results
  - Energy consumption may increase (e.g. buffer expansion)
  - Already simple control strategies can increase PV-self consumption
  - Electric battery storage can be replaced by thermal storage
  - Both PV-self-consumption and grid support can be notably increased



Schweizerische Eidgenossenschaft Confédération suisse

Swiss Federal Office of Energy SFOE

onfederazione Svizzera onfederaziun svizra source: TU Braunschweig

# **nZEB Monitoring and Simulation**

#### Five storey multi-family passive house nZEB

- 1700 m<sup>2</sup> ERA, 10 flats, built in 2018
- Monitoring in 2019

### Building and system technology

- Building envelope on passive house level
- 23 kW ground-source heat pump with free-cooling,
   2 borehole ground probes of 200 m each
- Mechanical ventilation with heat recovery
- 81.3 kW<sub>p</sub> PV, 44.5 kW<sub>p</sub> on the roof and 36.8 kW<sub>p</sub> façade-integrated (SW and SE)
- 78 kWh electric battery, shared battery electric vehicle





Schweizerische Eidgenossenschaft Confédération suisse

Swiss Federal Office of Energy SFOE





### **nZEB Monitoring and Simulation**

- Monitoring results 2019
  - Surplus in annual PV-production of about 40%, SPF HP in the range of 4.5
  - In 6 summer month about 90% autarky, during 9 month PV-surplus
  - However, occupancy of the building was rather low in 2019 (26 persons)
  - With higher occupancy, PV surplus is reduced





# Summary monitoring results of nZEB with HP

- 15 partly long-term monitorings in larger nZEB
  - High SPF of the heat pump up to 5.5 for all building services approved
  - Ambitious nZEB targets may remain a challenge in larger buildings

#### Conclusions

- High performance building envelope and high heat pump performance are a prerequisite to reach ambitious nZEB targets in larger buildings
- Large solar PV installation in the building envelope required, but building envelope may be a limitation in larger buildings
- System integration of different building functions can further increase the heat pump performance



















### **Prototype developments**

- Prototype developments in Annex 49 refer to integrations of multiple functions in one packaged unit, e.g.
- Prototype development of façade integrated heat pump
  - PV installed in the façade
  - Heat pump integrated behind PV panel
  - Cooling operation of adjacent office room shall enable an autarkic cooling operation driven by the PV modules
- Integrated façade module
  - Heat pump with connection to water circuit (cooling ceiling, TABS) and air cooling by fan coil
  - Integrated electric battery
- Investigation of prototypes
  - Simulations of prototypes for different boundary conditions (e.g. Façade, location, grid coupled, climate)
  - Monitoring in Test cells on the Campus of TU Graz











### **Prototype developments**

#### • Simulations results

- At site Graz the typical cooling demand of an office room can be almost entirely covered by PV
- In heating operation about 60% of the demand can be covered

#### Monitoring results

- Both heating and cooling operation could be successfully operated in the test cells
- Cooled cells are about 3-6 K colder than an uncooled room
- Max. temperatures of 27 °C could be kept

#### Development

- Integration of an electric battery is to question
- Facade integration of multiple modules will be analysed





## **IEA HPT Annex 49 - Conclusions**

#### State of nZEB

- Different nZEB implementations and ambition levels which are hard to compare
- Developed methodology enables relative comparison and transparency of implementation
- More harmonised implementation enables more standardised HP system solutions

#### Results IEA HPT Annex 49

- High performance of the investigated heat pumps in nZEB application in larger buildings
- Integration of different buildings services increases heat pump performance and cost-efficiency
- In larger buildings reaching the nZEB balance can be a challenge despite high HP performance
  In turn ambitious nZEB requirements can become a market driver for heat pumps

#### Integration of nZEB

- Integration of groups of buildings can further increase load balancing and flexibility
- Demand response has higher importance in nZEB as active component in future energy grids

















wiss Federal Office of Energy SFOE

## **Results of IEA HPT Annex 49**

- Results of IEA HPT Annex 49 are documented in the following final documents
  - Executive summary (2 page and 7 page)
  - Final report and parts
  - Part 1: State-of-the-art of heat pumps in nZEB
  - Part 2: Monitoring in nZEB with heat pumps
  - Part 3: Integration/Design/Control for heat pumps in nZEB
  - Part 4: Prototype developments of integrated heat pumps
  - 4-page Best practice sheets of monitored systems
- For download of IEA HPT Annex 49 deliverables please visit

#### https://heatpumpingtechnologies.org/annex49/deliverables



Schweizerische Eidgenossenschaft Confédération suisse

Swiss Federal Office of Energy SFOE

nfederazione Svizzera



## New Annex on Heat Pumps in positive energy districts

- New upcoming Annex for Heat pump in Positive energy districts (PED) with the topics
- State of heat pumps in positive energy neighbourhoods
- Techno-economic concept analysis by modelling and simulation of HP system integration, design and control
  - For clusters of buildings and neighbourhoods
  - For new built and retrofit
- Accompanying field monitoring of heat pumps in cluster of buildings and neighbourhoods
- State: Online Kick-off meeting, next meeting in presence planned for July, 4-5, Univ. of Innsbruck









### IEA HPT Annex 58: High-Temperature Heat Pumps (HTHP)





- Operating Agent: Benjamin Zühlsdorf, PhD, <u>bez@dti.dk</u>, Danish Technological Institute
- Participating Countries: Austria, Belgium, Canada, Denmark, France, Germany, Japan, Netherlands, Norway, Switzerland
- **Duration:** 01/2021 to 12/2023
- Homepage: <u>https://heatpumpingtechnologies.org/annex58</u>
- Objectives: Overview of HTHP technologies, potentials, perspectives, concepts and strategies for process heat with supply temperatures above 100 °C
- Overview of Activities:



Heat pump integration for nZEB – Results of IEA HPT Annex 49

### Thank you for your attention



