Bundesamt für Energie BFE

Sektion Netze

Bericht vom 10. Oktober 2019

Studie «Potential Demand Side Management in der Schweiz»

Quelle: shutterstock.com / Poungsaed-Studio
Datum: 10 Oktober 2019
Ort: Bern

Auftraggeberin:
Bundesamt für Energie BFE
CH-3003 Bern
www.bfe.admin.ch

Auftragnehmer/in:
B E T Suisse AG
Junkerbifangstrasse 2, CH-4800 Zofingen
www.bet-suisse.ch

Autor/in:
Dr. André Vossebein, B E T Suisse AG, andre.vossebein@bet-suisse.ch
Dr. Stefan Muster, B E T Suisse AG, stefan.muster@bet-suisse.ch
Ueli Betschart, B E T Suisse AG, ueli.betschart@bet-suisse.ch
Beat Kölliker, B E T Suisse AG, beat.koelliker@bet-suisse.ch

BFE-Bereichsleitung: Mohamed Benahmed
BFE-Programmleitung: Astrid Sontag
BFE-Vertragsnummer: SI/200293-01

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren dieses Berichts verantwortlich.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Summary</td>
<td>10</td>
</tr>
<tr>
<td>Résumé en Français</td>
<td>14</td>
</tr>
<tr>
<td>Definition DSM, Auftrag und Ziel der Studie</td>
<td>18</td>
</tr>
<tr>
<td>Methodisches Vorgehen</td>
<td>20</td>
</tr>
<tr>
<td>Potentialbegriffe</td>
<td>21</td>
</tr>
<tr>
<td>Theoretisches Potential</td>
<td>21</td>
</tr>
<tr>
<td>Definition</td>
<td>21</td>
</tr>
<tr>
<td>Quantifizierung</td>
<td>22</td>
</tr>
<tr>
<td>Technisches Potential</td>
<td>24</td>
</tr>
<tr>
<td>Definition</td>
<td>24</td>
</tr>
<tr>
<td>Quantifizierung</td>
<td>26</td>
</tr>
<tr>
<td>Soziotechnisches Potential</td>
<td>29</td>
</tr>
<tr>
<td>Wirtschaftliches Potential</td>
<td>34</td>
</tr>
<tr>
<td>Skizzierung Anwendungszwecke des DSM-Potentials</td>
<td>36</td>
</tr>
<tr>
<td>Überblick</td>
<td>36</td>
</tr>
<tr>
<td>Regelenergiemarkt</td>
<td>38</td>
</tr>
<tr>
<td>Redispetching</td>
<td>38</td>
</tr>
<tr>
<td>Netzentgeltminimierung</td>
<td>39</td>
</tr>
<tr>
<td>Integration der Produktion aus Erneuerbaren Energiequellen</td>
<td>39</td>
</tr>
<tr>
<td>Qualitative Bewertung der Sektoren</td>
<td>41</td>
</tr>
<tr>
<td>Strukturierung der volkswirtschaftlichen Bereiche</td>
<td>41</td>
</tr>
<tr>
<td>Überblick</td>
<td>42</td>
</tr>
<tr>
<td>Haushalte</td>
<td>43</td>
</tr>
<tr>
<td>Landwirtschaft, Gartenbau und Dienstleistungen</td>
<td>46</td>
</tr>
<tr>
<td>Industrie und Verarbeitendes Gewerbe</td>
<td>49</td>
</tr>
<tr>
<td>Verkehr</td>
<td>52</td>
</tr>
<tr>
<td>Ergebnisse der Quantifizierung des theoretischen, technischen und soziotechnischen Potentials</td>
<td>54</td>
</tr>
<tr>
<td>Gesamtbetrachtung Sektoren</td>
<td>54</td>
</tr>
<tr>
<td>Haushalte</td>
<td>56</td>
</tr>
<tr>
<td>Gesamtbetrachtung Potentiale</td>
<td>56</td>
</tr>
</tbody>
</table>
11.4 Rechtliche Hindernisse ... 94
11.4.1 Beschränkte Wahlfreiheit bei Tarifen .. 94
11.4.2 Angemessenheit der Tarife ... 95
11.4.3 Berechnungsvorschriften für Tarife .. 95
11.4.4 Marktdesign .. 96
11.4.5 Versorgungssicherheit .. 96
11.4.6 Nutzungsrechte für Flexibilität .. 97
11.4.7 Weitere Bestimmungen .. 97
11.5 Zusammenfassung .. 98
12 Schlussfolgerungen ... 100
Literaturverzeichnis .. 102
Anhang 1: Fragebogen EVU-Onlineumfrage .. 104
Anhang 2: Auswertung EVU-Umfrage .. 108
Anhang 3: Interviewleitfaden Verbände .. 113
Anhang 4: Interviewleitfaden Unternehmen ... 114
Anhang 5: Zusammenfassung der Verbands- und Unternehmensumfrage 116
Anhang 6: Berechnungen des exemplarischen Erschliessungsaufwands 121
Anhang 7: Exkurs Notstromaggregate .. 123
Abbildungsverzeichnis

Abbildung 1: Vereinfachte Darstellung des Prozesses der Zementherstellung ... 22
Abbildung 2: Normierter Tagesenergiebedarf (Lastprofil) Haushaltsgeräte .. 25
Abbildung 3: Zeitlich verfügbare Flexibilitätsquellen nach Sektoren ... 27
Abbildung 4: Hochgerechnete Summenkennlinien Papierindustrien nach Nutzungsformen 30
Abbildung 5: Maximale positive und negative Regelleistung von Kühlschränken ... 31
Abbildung 6: Soziotechnisches DSM-Potential Querschnittstechnologien .. 32
Abbildung 7: Einflussparameter auf DSM-Potentiale abhängig vom Anwendungszweck 36
Abbildung 8: Minimes und maximales DSM-Potential alle Sektoren ... 56
Abbildung 9: Überblick DSM-Potentiale Haushalte ... 57
Abbildung 10: Theoretisches Potential Haushalte ... 58
Abbildung 11: Vergleichmässiges technisches Potential Haushalte ... 59
Abbildung 12: Soziotechnisches Potential Haushalte ... 60
Abbildung 13: Minimale und maximale DSM-Potentiale Landwirtschaft, Gartenbau und Dienstleistungen 61
Abbildung 14: Minimales und maximales theoretisches Potential Landwirtschaft, Gartenbau und Dienstleistungen 62
Abbildung 15: Vergleichmässiges Technisches Potential Landwirtschaft, Gartenbau und Dienstleistungen 63
Abbildung 16: Soziotechnisches Potential Landwirtschaft, Gartenbau und Dienstleistungen 64
Abbildung 17: Minimales und maximales DSM-Potential Industrie und verarbeitendes Gewerbe 66
Abbildung 18: Theoretisches Potential Industrie und Verarbeitendes Gewerbe .. 67
Abbildung 19: Vergleichmässiges Technisches Potential Industrie und verarbeitendes Gewerbe 67
Abbildung 21: Überblick DSM-Potentiale Verkehr .. 70
Abbildung 22: Technisches Potential Haushalte pro Grossregion ... 71
Abbildung 23: Soziotechnisches Potential Haushalte nach Grossregionen (Zuschalten) 72
Abbildung 24: Soziotechnisches Potential Haushalte nach Grossregionen (Abschalten) 72
Abbildung 25: Technisches Potential (minimal und maximal) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion ... 73
Abbildung 26: Soziotechnisches Potential (Abschalten) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion .. 73
Abbildung 27: Soziotechnisches Potential (Zuschalten) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion .. 74
Abbildung 28: Technisches Potential (minimal und maximal) Industrie und verarbeitendes Gewerbe pro Grossregion 75
Abbildung 29: Soziotechnisches Potential Industrie und Verarbeitendes Gewerbe pro Grossregion . 75
Abbildung 30: Soziotechnisches Potential Industrie und Verarbeitendes Gewerbe pro Grossregion ..76
Abbildung 31: Technisches Potential Elektromobilität pro Grossregion...............................76
Abbildung 32: Soziotechnisches Potential ..77
Abbildung 33: Erschliessungsaufwand (total) ..80
Abbildung 34: Steuerungs-Infrastruktur ..81
Abbildung 35: Soziotechnisches DSM-Potential industrieller Produktionsprozesse...............84
Abbildung 36: Soziotechnisches DSM-Potential Querschnittstechnologien85
Abbildung 37: Soziotechnisches DSM-Potential Querschnittstechnologien in Industrie und GHD86
Abbildung 38: Soziotechnisches DSM-Potential Querschnittstechnologien in Haushalten87
Abbildung 39: Vor- und Nachteile von Arbeits- und Leistungspreiskomponenten96
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mittlere Auslastung nach Typzeiträumen bei Lüftungsanlagen in Industrie und GHD</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Spannbreite zwischen installierter Leistung und soziotechnischem Potential</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Übersicht genereller, aktueller Anforderungen der Anwendungszwecke</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>Übersicht DSM-fähige Prozesse nach EWI</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Überblick der Sektoren für eine qualitative Einschätzung</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Übersicht Prozesse und Anwendungen mit theoretischem Potential Haushalte</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Übersicht Prozesse und Anwendungen mit theoretischem Potential Landwirtschaft und Gartenbau</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>Übersicht Prozesse und Anwendungen mit theoretischem Potential Dienstleistungen</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Übersicht Stromverbräuche in GWh</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Übersicht Prozesse und Anwendungen mit theoretischem Potential Industrie und verarbeitendes Gewerbe</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Übersicht Prozesse und Anwendungen mit theoretischem Potential Verkehr</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>Zeitliche Verteilung Technischer Potentiale Haushalte</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>Zeitliche Verteilung Technischer Potentiale Landwirtschaft, Gartenbau und Dienstleistungen</td>
<td>63</td>
</tr>
<tr>
<td>14</td>
<td>Zeitliche Verteilung Technischer Potentiale Industrie und Verarbeitendes Gewerbe</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>Zusammenfassung Hemmnisse</td>
<td>98</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abk.</th>
<th>Art.</th>
<th>Artikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>B E T</td>
<td>Artikel</td>
<td>Büro für Energiewirtschaft und technische Planung GmbH bzw. B E T Suisse AG</td>
</tr>
<tr>
<td>DSI</td>
<td>Artikel</td>
<td>Demand Side Integration</td>
</tr>
<tr>
<td>DSM</td>
<td>Artikel</td>
<td>Demand Side Management</td>
</tr>
<tr>
<td>GHP</td>
<td>Artikel</td>
<td>Gute Herstellungspraxis</td>
</tr>
<tr>
<td>IKT</td>
<td>Artikel</td>
<td>Informations- und Kommunikationstechnologie</td>
</tr>
<tr>
<td>KMU</td>
<td>Artikel</td>
<td>Kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>PRL</td>
<td>Artikel</td>
<td>Primärregelleistung</td>
</tr>
<tr>
<td>RTO</td>
<td>Artikel</td>
<td>Regional Transmission System Operator</td>
</tr>
<tr>
<td>SaT</td>
<td>Artikel</td>
<td>Samstags tagsüber</td>
</tr>
<tr>
<td>SFN</td>
<td>Artikel</td>
<td>Sonn- und feiertags sowie nachts</td>
</tr>
<tr>
<td>SPS</td>
<td>Artikel</td>
<td>Speicherprogrammierbare Steuerung</td>
</tr>
<tr>
<td>SRL</td>
<td>Artikel</td>
<td>Sekundärregelleistung</td>
</tr>
<tr>
<td>TRL</td>
<td>Artikel</td>
<td>Tertiärregelleistung</td>
</tr>
<tr>
<td>TSO</td>
<td>Artikel</td>
<td>Transmission System Operator</td>
</tr>
<tr>
<td>VBH</td>
<td>Artikel</td>
<td>Vollastbenutzungsstunden</td>
</tr>
<tr>
<td>VNB</td>
<td>Artikel</td>
<td>Verteilnetzbetreiber</td>
</tr>
<tr>
<td>WTT</td>
<td>Artikel</td>
<td>Werktags tagsüber</td>
</tr>
</tbody>
</table>
1 Management Summary

Es wurde eine erste Schätzung für die Grössenordnung des DSM-Potentials in der Schweiz erstellt. Über alle Sektoren besteht ein theoretisches DSM-Potential von 31.0 bis 46.6 GW (aufaddierte elektrische Leistungen der Anwendungen) und übersteigt somit die Schweizer Spitzenlast. Das technische, für die Nutzung verlässliches Potential beträgt ca. 1.1 bis 2.6 GW. Gründe für die grossen Unterschiede der beiden Potentialstufen sind vor allem in der oft nicht-gleichzeitigen Nutzung der verschiedenen Verbraucher, aber auch in den oft nur kurzen Betriebszeiten der Verbraucher zu finden.

Entsprechend werden die Potentiale in der Arbeit zeitlich gegliedert dargestellt, wie es auch in anderen Studien zum Thema DSM bereits praktiziert wurde. Das sozietechnische Potential liegt bei etwa 0.6 bis 1 GW, da die Bereitstellung elektrischer Verbraucher für DSM in der Realität nicht auf eineingeschränkte Akzeptanz treffen dürfte.

Der Abschlag vom theoretischen zum technischen Potential ist bei Industrie und Gewerbe deutlich geringer als bei den Haushalten resp. bei den Dienstleistungen. Das technische Potential beträgt 358.9 bis 1423.5 MW. Das soziotechnische Potential liegt jeweils zwischen 10 und 30% dieser Werte, d.h. zwischen 124 und 290 MW.

Das technische und das soziotechnische Potenzial im Verkehr sind derzeit vernachlässigbar, wird aber mit der Verbreitung der E-Mobilität steigen. Das theoretische Potenzial beträgt 140 MW.

Aufgrund der eingeschränkten Datenlage sollten die ermittelten Werte in weiteren Studien mit Hilfe weiterführender Datenrecherche weiter geschärft werden. Erst dann ist auch die genaue Bezifferung der Potentiale für die Grossregionen möglich. In der Studie wird davon ausgegangen, dass die Potentiale in etwa analog zur Anzahl der Haushalte bzw. der Betriebe in den Schweizer Grossregionen verteilt sind.

Für die Nutzung von DSM in der Schweiz gibt es heute unterschiedliche Hemmnisse:

Zum anderen wären Standardisierungen hilfreich, um technische Hemmnisse für DSM zu beseitigen, sie können aber nicht von der Schweiz alleine herbeigeführt werden.

Für eine umfassendere Nutzbarmachung der DSM-Potentiale ist es zudem wichtig, dass eine Verbesserung der wirtschaftlichen Anreize erfolgt, diese sind heute oft noch nicht ausreichend.

2 Résumé en Français

On entend par «Demand-Side-Management » (DSM) des mesures mises en place par des tiers pour influencer la consommation d'électricité des clients en fin de chaîne dans le but d'optimiser économiquement un système énergétique. Cela peut prendre la forme d'une réduction ou d'un décalage de la consommation. Le DSM est connu depuis les années 1970 et se pratique déjà en Suisse aujourd'hui sous la forme, par exemple, du pilotage des gros appareils électroménagers au moyen de signaux de télécommandes centralisées. En Suisse, on ne connaît pas l'ampleur absolue des potentiels actuels afférents à la gestion de la demande, pas plus que l'on ne sait si différentes sources de flexibilité se prêtent à des buts d'applications définis tels que par exemple la fourniture d'une énergie de réglage. De même, les obstacles à l'utilisation du DSM et les démarches visant à les supprimer ne sont pas suffisamment clairs. L'Office fédéral de l'énergie (OFEN) a par conséquent chargé la société BET Suisse AG (BET) de traiter ces questionnements.

Dans un premier temps, BET a soumis les paramètres suivants: Potentiel théorique, Potentiel technique, Potentiel socio-technique et Potentiel économique à une analyse qualitative. Tandis que le potentiel théorique cible l'adéquation fondamentale des consommateurs d'électricité et des consommations d'électricité pour le DSM, le potentiel technique englobe par exemple les restrictions conditionnées par les installations de production. Le potentiel socio-technique place l'acceptation au premier-plan, le potentiel économique pose lui la question de savoir si l'investissement de l'utilisation d’un DSM va de pair avec un gain approprié.

Ensuite, BET a discuté de l'adéquation des potentiels susmentionnés avec les usages prévus désignés par le commanditaire, à savoir le «Marché de l'énergie de réglage», le «Redispatching», la «Minimisation de la taxe d'utilisation de réseau» et l'«Intégration de la production d'énergies renouvelables».

Une première estimation de l'ordre de grandeur du potentiel d’un DSM pour la Suisse a été dressée. Tous secteurs confondus, il existe un potentiel théorique du DSM compris entre 31.0 et 46.6 GW (somme des potentiels électriques de l’application) et dépasse par conséquent la charge de pointe suisse. Le potentiel technique utilisable de manière fiable n'est compris lui, qu'entre 1.1 et 2.6 GW. Les raisons pour la grande différence entre les deux niveaux potentiels sont avant tout à chercher dans les exploitations non-simultanées des différents consommateurs, mais également dans les fréquentes courtes périodes d'exploitation des consommateurs.

Les potentiels dépendent en partie de la saison et de l'heure du jour, et ils ne sont pas toujours disponibles. Ainsi par exemple les applications de chauffage jouent-elles un rôle déterminant dans l'irrégularité d'ampleur de ce potentiel sur l'échelle de temps. De manière correspondante, les potentiels sont représentés structurés en temps dans ce travail. Cette méthode a déjà été pratiquée dans d'autres études sur le thème du DSM. Le potentiel socio-technique est compris entre environ 0.6 et 1 GW vu que la mise de consommateurs électriques à la disposition du DSM devrait, dans la réalité, rencontrer une acceptation limitée.
C'est dans le domaine des ménages et des services que l'on peut s'attendre au potentiel socio-technique le plus élevé. L'industrie et le commerce ont un potentiel socio-technique légèrement inférieur. Pour les ménages, le potentiel technique maximal disponible est de 440,6 MW. Il en résulte un potentiel socio-technique maximal d'environ 311 ou 344 MW pour la mise en marche et l'arrêt.

Un potentiel technique compris entre 278 MW et 748 MW a été calculé pour les services (y compris l'agriculture et l'horticulture). Le potentiel socio-technique qui en résulte se situe entre 112 et 304 MW. Les processus importants de DSM sont le "chauffage des locaux", l"eau chaude", la "chaleur industrielle", la "climatisation / ventilation / services du bâtiment" et les "entraînements et processus".
La réduction du potentiel théorique au potentiel technique est nettement plus faible pour l'industrie et le commerce que pour les ménages et les services. Le potentiel technique est de 358,9 à 1423,5 MW. Le potentiel socio-technique se situe entre 10 et 30% de ces valeurs, soit entre 124 et 290 MW.

Le potentiel technique et socio-technique des transports est actuellement négligeable, mais il augmentera avec l'augmentation de la mobilité électrique. Le potentiel théorique est de 140 MW.

En raison du corpus de données restreint, il faudrait une prospection approfondie des données pour augmenter la précision des valeurs déterminées. Ce n’est qu’ensuite qu’on pourra chiffrer avec précision les potentiels afférents aux grandes régions de Suisse. L’étude part cependant du principe que les potentiels sont approximativement distribués de façon analogue au nombre de foyers et d'entreprises dans ces grandes régions.

Il existe aujourd'hui en Suisse différents obstacles à l'utilisation du DSM. Il faudrait d'une part que l'industrie et d'autres secteurs développent un savoir-faire ciblé. Souvent les différents acteurs ne disposent aujourd'hui pas des données et des informations qui leur permettraient d'inscrire leur flexibilité dans la
gestion de l’énergie dans le cadre du DSM. Cela concerne fondamentalement le thème du DSM mais aussi p. ex. des aspects techniques des propres consommateurs d’électricité et complique l’apparition et le développement de modèles commerciaux correspondants. Des campagnes à grande échelle pourraient être propices à une amélioration du niveau d’information des parties impliquées.

D’autre part, des standardisations aideraient à supprimer des obstacles techniques au DSM, mais elles ne peuvent pas être introduites par la Suisse seule. Afin de rendre le potentiel du DSM plus “réalisable”, il est en outre important d’améliorer les incitatifs économiques qui aujourd’hui souvent pèchent par leur insuffisance.

Autre domaine synonyme d’obstacles: les règlements juridiques p. ex. au sujet des tarifs. Il en va de même aussi pour différents obstacles d’ordre réglementaire (entre autres dans la LApEI et l’OApEI). L’introduction d’une réglementation de la flexibilité et d’une plus grande marge de manœuvre en matière de tarification sont utiles dans le développement du DSM. En outre, en cas de conflit, la propriété et le droit d’utilisation des flexibilités dans le cadre d’un regroupement pour la consommation propre (RCP) pourraient être réglementés plus explicitement.
3 Definition DSM, Auftrag und Ziel der Studie

Zum Lastmanagement / DSM gehören also solche Massnahmen, die geeignet sind, um das Verbrauchsverhalten anzupassen. Dieses geschieht meist auf Basis ökonomischer Anreize, wobei aber auch technische Eingriffe die Last beeinflussen können. Technische Eingriffe können auch auf Basis ökonomischer Signale erfolgen.

Folglich gilt für diese Studie:

2 Dieses könnte zum Beispiel der Fall sein, wenn Strombezugsverträge mit Toleranzbändern abgeschlossen werden.
3 Nach Absprache mit dem Auftraggeber wird aber auch an einigen Stellen der Studie auf dezentrale, fossil-befeuerte Stromerzeuger ohne Abwärmenutzung (z. B. Notstromdiesel) eingegangen.

⁴ Auch für andere Länder Europas fehlen durchgängig konsistente Erhebungen des DSM-Potentials, welche alle Branchen umfassen.
4 Methodisches Vorgehen

Die Studie beleuchtet zunächst verschiedene Potentialbegriffe und Ansätze zu deren Ermittlung, um dann die vier vorgegebenen Anwendungszwecke und deren Anforderungen zu skizzieren. Die Fokussierung auf definierte Anwendungszwecke grenzt das grundsätzliche Potential für DSM aufgrund der jeweiligen Regularien und Randbedingungen weiter ein.

⁵ Vgl.: Anhang: „Befragung EVU“ und „Befragung Industrie und Verbände“
5 Potentialbegriffe

Für die vorliegende Studie werden zunächst die Potentialbegriffe

- Theoretisches Potential,
- Technisches Potential,
- Soziotechnisches Potential und
- Wirtschaftliches Potential

beschrieben.

Diese Potentialbegriffe sind der theoretische Ausgangspunkt der Untersuchungen. Sie helfen, das Untersuchungsfelds grundsätzlich zu strukturieren und zugleich kritische Aspekte bei der Erfassung des DSM-Potentials zu identifizieren.

5.1 Theoretisches Potential

5.1.1 Definition

Das theoretische Potential entspricht dem Potential, welches die installierte elektrische Leistung aller grundsätzlich geeigneten Anlagen ohne Berücksichtigung weiterer Faktoren umfasst. Gemäß der eingangs angeführten Definitionen zu DSM wird als Kriterium für die theoretische Eignung einzelner Anwendungen oder Prozesse für DSM bestimmt, ob der Verbrauch entweder

- zeitlich verschoben, also abgesenkt und dann wieder „nachgeholt“ oder
- ausschliesslich gesenkt werden kann.

Für physisch vorhandene Güter und Produkte ist eine gewisse Speicherbarkeit im Gesamtprozess oder eine Veränderbarkeit der Nachfrage zentral. DSM ist demnach nur dort eine Option, wo in den Prozessen Lager oder Speicher vorhanden sind oder die Nachfrage verändert werden kann. Veranschaulichen lässt sich dieses z. B. am Prozess der Zementherstellung.

7 Vgl.: Imboden et al. (2016): „Teilnahme industrieller Regelleistungs-Anbieter am Schweizer SDL-Markt - Technische und wirtschaftliche Opportunitäten, Bewertungsmethodik“. Horw. S. 74
Abbildung 1: Vereinfachte Darstellung des Prozesses der Zementherstellung

Entsprechendes gilt auch für die Bedürfnisbefriedigung im Haushalt, wo zum Beispiel das Kochen nicht zu beliebigen Zeitpunkten erfolgen kann. Andere Dinge jedoch, zum Beispiel Waschen oder maschinelle Wäschetrocknen sind zeitlich variabel möglich. Gleichwohl ist auch hier eine gewisse Lagerhaltung (Wäsche, Geschirr etc.) nötig.

5.1.2 Quantifizierung

Das direkte Verfahren (A) kann nur bei sehr guter Datenlage hinsichtlich elektrischer Leistung und Anzahl der der jeweiligen, potentiellen DSM-Anlagen verwendet werden. Dazu muss ein statistisch erfasster Bestand der Anlagen sowie deren jeweils durchschnittliche, installierte elektrische Leistung zugänglich sein. Im Idealfall könnte die Anzahl der jeweiligen Anlagen über den verschiedenen, elektrischen Leistungen abgetragen werden. In der Literatur wird darauf verwiesen, dass die Methode bei entsprechender Datenverfügbarkeit auch für Querschnittstechnologien geeignet ist. Dieses könnten z.B. technisch ähnliche Warmwasserboiler sein. Wichtig ist zu bedenken, dass diese Methode nur für homogene

8 Darstellung B E T in Anlehnung an Imboden
9 Vgl.: Steurer, S. 46 ff.
10 Vgl.: Steurer, S. 47
Anlagencluster genutzt werden kann. Zentral ist es, die genaue Anzahl der homogenen Anlagen zu kennen resp. dass diese mit einer hohen Genauigkeit abgeschätzt werden können.

− Berechnungsmethode A (direktes Verfahren):

\[P_{\text{inst,}A} = P_{\text{el,Anlage}} \times N \]

\(P_{\text{inst,}A} \): Installierte Leistung aller elektrischen Anlagen nach Methode A
\(P_{\text{el,Anlage}} \): Leistung aller elektrischen Anlagen
\(N \): erfasster Anlagenbestand der Anlagen

Im Gegensatz zu diesem direkten Verfahren werden die beiden nachfolgend geschilderten, indirekten Verfahren angewendet, wenn z. B. detaillierte Angaben zur Verteilung der Leistungen der Anlagen nicht vorhanden sind.

− Berechnungsmethode B (indirektes Verfahren):

\[P_{\text{inst,}B} = \frac{m_{\text{Kap}} \times E_{\text{spez}}}{8760 \times (1 - v_N)} \]

\(P_{\text{inst,}B} \): Installierte Leistung aller elektrischen Anlagen nach Methode B
\(m_{\text{Kap}} \): Produktionskapazität
\(E_{\text{spez}} \): spezifischer Stromverbrauch
\(v_N \): Nichtverfügbarkeitsfaktor

Üblicherweise wird dieser Ansatz für DSM-Analysen in der energieintensiven Industrie genutzt, die aber in der Schweiz gegenüber Nachbarländern weniger verbreitet ist.

− Berechnungsmethode C (indirektes Verfahren):
\[P_{\text{inst.}C} = \frac{E_i}{\text{VBH}} \]

\(P_{\text{inst.}C} \): Installierte Leistung aller elektrischen Anlagen nach Methode C
\(E_i \): Spezifischer Jahresstromverbrauch
\(\text{VBH} \): Volllastbenutzungsstunden

Anspruchsvoll ist hier die Schätzung der Volllastbenutzungsstunden. Diese sind oft nur auf für den gesamten Verbrauch des Energiekunden, nicht aber für einzelne Prozesse bekannt, in denen unter Umständen dann allfällige Flexibilität vorhanden ist. Wenn sich zum Beispiel der Strombezug eines Unternehmens aus dem Verbrauch für den eigentlichen, DSM-fähigen Kernprozess und dem Verbrauch für die Verwaltung etc. besteht, fallen die Werte für Unternehmen und Kernprozess auseinander.

Die Problematik der Datenlage kann es nötig machen, unterschiedliche Berechnungsansätze parallel zu nutzen, um einen wahrscheinlichen Wert bzw. einen Ergebnisraum abschätzen zu können. Das Verfahren C hat den geringsten Datenbedarf, so dass es für diese Studie bevorzugt wurde. Alle anderen Verfahren würden zwar theoretisch zu schärferen Ergebnissen führen, beruhen dann aber auf noch mehr Unsicherheiten und können nicht mit vollumfänglich nachvollziehbaren Daten unterlegt werden.

5.2 Technisches Potential

5.2.1 Definition

Nur eine Teilmenge des theoretischen Potentials ist dem technischen Potential zuzurechnen. Dieses technische Potential ist wie folgt definiert:

![Diagramm des Tagesenergiebedarfs für Haushaltsgeräte](image)

Abbildung 2: Normierter Tagesenergiebedarf (Lastprofil) Haushaltsgeräte

13 Vgl.: Stadler, S. 169
Für den Zweck der Studie ist es angesichts der umfassenden Betrachtung aller volkswirtschaftlichen Sektoren und der definierten Anwendungszwecke sinnvoll, für definierte Zeiträume ein durchschnittliches DSM-Potential auszuweisen14. Es werden in dieser Studie daher Aussagen zum technischen Potential hinsichtlich Saison (Sommer, Winter) und Tag bzw. Tageszeit unterschieden.

5.2.2 Quantifizierung

Nachstehende Grafik zeigt exemplarisch die Zeitabhängigkeit verschiedener Flexibilitätsquellen auf.

15 SPS = Speicher-programmierbare Steuerung

Für die Studie wird das vorhandene technische DSM-Potential zunächst hinsichtlich der saisonalen Verfügbarkeit und hinsichtlich der täglichen Verfügbarkeit klassifiziert (analog zum Vorgehen bei Steurer).

Diese Vorgehensweise führt zu einer Aussage über eine Vergleichsmäßigung des DSM-Potentials18. Dies ist vor dem Hintergrund des insgesamt breiten Untersuchungsfelds und angesichts der Datenlage zielführend. Die Quantifizierung des technischen Potentials wird unterteilt nach

- Sommer und Winter und
- Tag und Nacht.

Die vergleichsmäßige Aufstellung des Potentials in Typzeiträumen gibt natürlich keinen exakten Hinweis mehr darauf, wie genau sich das DSM-Potential im Zeitablauf zum jeweiligen Zeitpunkt verhält, also beispielsweise innerhalb eines Tages. Entsprechend wird für diese Arbeit vorgeschlagen, das maximal und minimal verfügbare DSM-Potential in der Periode entsprechend der Tageszeit (Tag / Nacht) mit einer Bandbreite zwischen Maximal- und Minimalwert auszuweisen.

Für die Ermittlung der Bandbreite muss der Verbrauch (elektrische Arbeit) dafür mit maximalen und minimalen, typischen Vollbenutzungsstunden auf elektrische Leistung umgerechnet werden. Die nötigen Vollbenutzungsstunden können z. B. mittels Erfahrungswerten durch typische Werte genähert, oder aus anderen Studien entnommen werden:

\[
p_{\text{DSM} \text{techn. max / min}} = \frac{W_{\text{DSM}}}{VBH_{\text{max/min}}}
\]

\[
p_{\text{DSM} \text{techn. max / min}} = \text{Maximal- oder Minimalwert des technischen DSM-Potentials}
\]

\[
W_{\text{DSM}} = \text{Elektrische Arbeit DSM}
\]

\[
VBH_{\text{max/min}} = \text{Maximale oder minimale Stunden für DSM im Zeitraum}
\]

Die Aussage mit der Spannbreite dient auch dazu, die technischen Minimal- und Maximallasten zu berücksichtigen.

17 Vgl.: Steurer S. 184. Abkürzungen: EI = Ernährungsindustrie; KI = Kunststoffindustrie; Meb = Metallbearbeitung; Mach = Maschinenbau; Fzb = Fahrzeugbau; Lw = Landwirtschaft; Büro = Büros; Beh = Beherbergung; Krh = Krankenhäuser; Ha = Handel; Gast = Gastronomie; WTT = Werktags tagsüber; SaT = samstags tagsüber; SFN = Sonn- und Feiertage sowie nachts

18 Vgl.: Steurer S. 179 ff.
Schließlich wird das technische Potential stark davon geprägt, über welche Dauer ein flexibilisierbarer Verbrauch beeinflusst werden kann, in welchen Zeitabständen zueinander das stattfinden kann und wie oft. Eine solche Differenzierung wird in der Arbeit durch eine Aussage zum maximalen oder minimalen technischen DSM-Potential ersetzt. Stünde das DSM-Potential (in MW) in einem jeweiligen Zeitraum von z. B. 2196 Stunden nur eingeschränkt während 1000 Stunden zur Verfügung, würde die verlässliche Leistung entsprechend korrigiert19:

\[
P_{\text{DSM}}^{\text{vergl.techn.max/min}} = P_{\text{techn.max/min}}^{\text{DSM}} \times \frac{V_{\text{BH avail}}}{V_{\text{BH}}}
\]

\[
P_{\text{DSM}}^{\text{vergl.techn}} = \text{vergleichmässigt bereitstehendes, technisches DSM-Potential}
\]

\[
P_{\text{DSM,techn.max/min}} = \text{Maximales bzw. minimales bereitstehendes, technisches DSM-Potential}
\]

\[
V_{\text{BH avail}} = \text{Stunden im Zeitraum, in denen technisches DSM-Potential nutzbar ist}
\]

\[
V_{\text{BH}} = \text{Stunden im Zeitraum}
\]

Für die vier Kombinationen aus Tag und Nacht sowie aus Sommer und Winter entstehen so Aussagen, welche unter anderem der Saisonabhängigkeit des DSM-Potentials Rechnung tragen.

5.3 Soziotechnisches Potential

Nicht das gesamte technische Potential steht für DSM am Ende zur Verfügung, da soziotechnische Einflüsse wirken. Der Begriff des soziotechnischen Potentials wurde dazu eingeführt20:

«Es beschreibt das Flexibilitätspotential, das […] als prinzipiell nutzbar eingeschätzt wurde. Es berücksichtigt daher neben den technischen Aspekten immer auch die individuelle Perspektive der Unternehmen auf wirtschaftliche und logistische Rahmenbedingungen und teilweise auch subjektive Einschätzungen der befragten Personen»21.

19 Vgl.: Stadler, S. 114.
20 Vgl.: Langrock et al, S. 18
21 Vgl.: Langrock et al, S. 18
Reduktion des Stromverbrauchs) und in negativer Richtung (Zuschalten bzw. Erhöhung des Stromverbrauchs) differenziert22.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Papier-hochgerechnete-Summenkennlinie.png}
\caption{Hochgerechnete Summenkennlinien Papierindustrien nach Nutzungsformen23}
\end{figure}

Nachfolgende Grafik veranschaulicht, dass die entsprechenden Werte durchaus differenzieren können, und zwar hinsichtlich Maximalwert als auch hinsichtlich der zeitabhängigen Verfügbarkeit:

22 Vgl.: Steurer, S. 37
23 Vgl.: Langrock et al, S. 112
24 Elektrische Widerstandsheizungen sind in den meisten Kantonen verboten und im Sinne der Energieeffizienz nicht erwünscht, gleichwohl als steuerbare Verbraucher immer noch vorhanden.
Abbildung 5: Maximale positive und negative Regelleistung von Kühlschränken25

Speziell in industriellen und kapitalintensiven Prozessen ist es oft nicht möglich, Lasterhöhungen durchzuführen. Die jeweiligen Produktionsanlagen sind bereits hoch ausgelastet. Lastsenkungen sind dann ebenfalls wenig attraktiv, weil eine geringere Auslastung regelmässig geringere Deckungsbeiträge bedeutet.

25 Vgl.: Stadler, S. 169. Die Grafik bezieht sich auf Deutschland.
Es hat sich während der Bearbeitung der Studie herausgestellt, dass die subjektive Einschätzung z. B. der befragten Branchenvertreter von einem hohen Mass an Unsicherheiten und Unkenntnis geprägt ist.

In den verschiedenen, für diese Arbeit gesichteten Studie konnte kein umfassendes Bild erkannt werden, wie das Verhältnis von technischem und soziotechnischem Potential ist. In einzelnen Studien sind aber zum Beispiel für Deutschland, abhängig vom jeweils betrachteten DSM-Potential, zum Teil nur sehr geringe Anteile der installierten Leistung als soziotechnisches Potential identifiziert worden. Insbesondere für die Querschnittsbereiche sind nur geringe Anteile der installierten Leistung (bzw. des theoretischen Potentials) verfügbar.

Abbildung 6: Soziotechnisches DSM-Potential Querschnittstechnologien

Es wurden Raumwärme, Prozesswärme, Prozesskälte, Klimakälte, Mechanische Energie und Sonstige als technische Querschnittstechnologien identifiziert. Die installierte Leistung ist in positiver und negativer Richtung (Lastreduktion und Lasterhöhung) dargestellt. Die Roten Linien stellen das Fehlermaß dar. Angenommene Aktivierungsdauer ist höchstens 30 Minuten. Die Zahlen beziehen sich auf Deutschland. DSI = Demand-Side Integration

26 Vgl.: Steurer, S. 65. Die Roten Linien stellen das Fehlermaß dar. Angenommene Aktivierungsdauer ist höchstens 30 Minuten. Die Zahlen beziehen sich auf Deutschland. DSI = Demand-Side Integration
Tabelle 2: Spannbreite zwischen installierter Leistung und soziotechnischem Potential

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Aussage zu</th>
<th>Installierte Leistung</th>
<th>Soziotechnisches DSI-Potential²⁷</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steurer²⁸</td>
<td>Industriellen Produktionsprozessen Dauer: 1 Stunde Richtung: positiv</td>
<td>ca. 8.4 GW</td>
<td>Ca. 2.7 GW</td>
<td>32.1%</td>
</tr>
<tr>
<td></td>
<td>Industriellen Produktionsprozessen Dauer: 4 Stunde Richtung: positiv</td>
<td></td>
<td>Ca. 2.0 GW</td>
<td>23.8%</td>
</tr>
<tr>
<td></td>
<td>Industriellen Produktionsprozessen Dauer: 1 Stunde Richtung: negativ</td>
<td></td>
<td>Ca. 0.4 GW</td>
<td>4.8%</td>
</tr>
<tr>
<td></td>
<td>Industriellen Produktionsprozessen Dauer: 4 Stunde Richtung: negativ</td>
<td></td>
<td>Ca. 0.4 GW</td>
<td>4.8%</td>
</tr>
<tr>
<td></td>
<td>Querschnittstechnologien Dauer: 1 Stunde Richtung: positiv</td>
<td>Ca. 219 GW</td>
<td>Ca. 5.1 GW</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td>Querschnittstechnologien Dauer: 4 Stunde Richtung: positiv</td>
<td></td>
<td>Ca. 3.7 GW</td>
<td>1.7%</td>
</tr>
<tr>
<td></td>
<td>Querschnittstechnologien Dauer: 1 Stunde Richtung: negativ</td>
<td></td>
<td>Ca. 3.6 GW</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>Querschnittstechnologien Dauer: 4 Stunde Richtung: negativ</td>
<td></td>
<td>Ca. 2.6 GW</td>
<td>1.2%</td>
</tr>
<tr>
<td>Langrock²⁹</td>
<td>Papierindustrie Dauer: 1 Stunde Papierindustrie</td>
<td>Ca. 3 GW</td>
<td>Ca. 1 GW</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

Insgesamt scheint gemäss diesen Quellen eine Spannbreite zwischen installierter Leistung und soziotechnischem Potential für industrielle Produktionsprozesse von 5 bis 10% für die negative und 20 bis 35% für die positive Richtung gegeben zu sein. Plausibel ist gerade für industrielle Produktionsprozesse, dass diese in negativer Richtung geringere Werte aufweisen, da ein «spontaner, exogen verursachter

²⁷ DSI = Demand Side Integration. DSI wird oft als Obergriff genutzt, unter den zum einen einen DSM im hier genutzten Sinn, zum anderen aber auch DSR (Demand Side Response) subsumiert werden. DSR beschreibt die (indirekte) Reaktion des Verbrauchers auf ein Signal zur Verbrauchsbeeinflussung (z. B. ein ökonomisches Signal). DSM hingegen beinhaltet eine eher direkte, unmittelbare Beeinflussung des Verbrauchs durch ein Steuersignal. Für die hier vorliegende Arbeit werden DSI und DSM synonym gebraucht, was nicht der strengen Definition entspricht.

²⁸ Vgl.: Steurer, S. 63 ff. Speziell für die Industrie ist anzumerken, dass hier eine Branchenstruktur zugrunde liegt, die nicht derjenigen in der Schweiz entspricht.

²⁹ Vgl.: Langrock et al., S. 22
Start des Prozesses vielfach nicht ohne weiteres möglich sein wird, z. B. wegen Sicherheitsgründen. Für Querschnittstechnologien sind 1 bis 5% anzunehmen. Für Haushaltsanwendungen wie Spülen etc. ist ein Wert von maximal 5% anzunehmen, da zum Beispiel Wärmeanwendungen und Warmwasserzeugung in anderen Branchen als Querschnittstechnologien bezeichnet würden, hier aber viel zentraler sind. Die Autoren nehmen an, dass diese Spannbreite auch für den Dienstleistungsbereich sowie für Gartenbau und Landwirtschaft sowie Verkehr gegeben ist.

\[p^{DSM}_{sozi,kont,max/min} = p^{DSM}_{techn} \times Abschlag_{max/min} \]

Durch die bereits geschilderte Vergleichsmäßigung wird ein möglicherweise entstehender Fehler tendenziell aber wieder korrigiert. Das technische Potential wird insgesamt folglich über Auslastungsfaktoren innerhalb von Typzeiträumen abgeleitet.

5.4 Wirtschaftliches Potential

In der Realität wird der Umfang der tatsächlich genutzten Flexibilität aus ökonomischen Gründen nochmals geringer ausfallen. Das «wirtschaftliches Potential» wird wie folgt definiert:

«Wirtschaftliches DSM-Potential liegt dann vor, wenn die direkten und indirekten Kosten der Bereitstellung und Nutzung von DSM geringer sind als die dadurch beim Stromverbraucher direkt oder indirekt anfallenden Erlöse».

30 Die genauen Abschläge finden sich jeweils unten im Kapitel 8 genannt.

6 Skizzierung Anwendungszwecke des DSM-Potentials

Das auf die Anwendungszwecke (bzw. in nachstehender Grafik: Nutzungsformen) entfallende DSM-Potential hängt von einer Reihe von Einflussparametern ab.

Abbildung 7: Einflussparameter auf DSM-Potentiale abhängig vom Anwendungszweck

Das Potential kann sich demnach für verschiedene Nutzungsformen unterschiedlich darstellen, da verschiedene Aktivierungszeiträume, Schaltdauern etc. einzuhalten sind, wenn das jeweilige Potential eingesetzt werden soll.

Sofern grundsätzlich DSM-fähige Prozesse und Anwendungen nicht die Anforderungen eines einzelnen Verwendungszweckes erfüllen, ist das Potential entsprechend verringert.

Gemäß Auftrag werden in dieser Studie die folgenden Verwendungszwecke beleuchtet:

- Regelenergiemarkt (vor allem Sekundärregelung, Tertiärregelung)
- Redispatch Übertragungsnetz
- Netzentgeltsminimierung
- Integration der Produktion Erneuerbarer Energien.

6.1 Überblick

Die Anforderungen der für die Studie definierten Anwendungszwecke sind in der nachstehenden Tabelle zur Übersicht aufgeführt und werden unten weiter erläutert:

31 Vgl.: Steurer, S. 33
32 Vgl.: Steurer, S. 62
Tabelle 3: Übersicht genereller, aktueller Anforderungen der Anwendungszwecke

<table>
<thead>
<tr>
<th>Pooling möglich</th>
<th>Regelenergiemarkt</th>
<th>Redispatching</th>
<th>Netzentgeltminimierung</th>
<th>Integration Erneuerbarer Energien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>Denkbar</td>
<td>Nein</td>
<td>Ja</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderung an Aktivierungszeit</th>
<th>Sekunden bis Minuten</th>
<th>Minuten bis Stunden</th>
<th>Unmittelbar bis Stunden</th>
<th>Unmittelbar bis Stunden</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verfügungsduer</th>
<th>Minuten bis Stunden</th>
<th>Stunden</th>
<th>Stunden</th>
<th>Stunden</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reliabilität</th>
<th>Hoch</th>
<th>Hoch</th>
<th>Mittel bis hoch</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung TSO ist, dass das SDL-Angebot im vereinbarten Umfang zeitlich uneingeschränkt zur Verfügung steht</td>
<td>Anforderung TSO wäre, dass das Redispatching aus Gründen der Netz sicherheit im vereinbarten zeitlich uneingeschränkt zur Verfügung steht</td>
<td>Je besser Verbraucher steuerbar sind, desto höher ist der Optimierungseffekt</td>
<td>Nur eine zuverlässige Entlastung der Betriebsmittel kann dafür sorgen, dass diese z.B. kleiner dimensionsiert werden können</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definierte Vorgaben zur Laständerungsgeschwindigkeit</th>
<th>Ja</th>
<th>Nein</th>
<th>Nein</th>
<th>Nein</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Netzebene</th>
<th>Irrelevant</th>
<th>Netzebene 1</th>
<th>Meist Netzebenen 5 bis 7</th>
<th>Netzebene 5 bis 7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Relevanz des Orts der Bereitstellung («Knotenscharfe»)</th>
<th>Zum Teil</th>
<th>Ja</th>
<th>Ja</th>
<th>Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommentare</td>
<td>Redispatching wird heute nur auf Erzeugungsseite praktiziert</td>
<td>Dient der einzelwirtschaftlichen Optimierung, nicht der Systemoptimierung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33 Insbesondere im Zusammenhang mit der Regelenergie sind noch Anforderungen an die Mindestgrössse (bei der Prüfqualifika tion) zu beachten, die aber ggf. auch über einen Pool gemeinsam mit anderen Flexibilitätsquellen erfüllt werden.

34 Je nach Anspruch an die Güte der Optimierung.

35 Je nach Anspruch an die Güte der Optimierung.

36 Hier müsste ggf. mit Swissgrid diskutiert werden, ob eine Anpassung möglich wäre.
6.2 Regelenergiemarkt

Die Netzebene der Bereitstellung ist für die Bereitstellung der Regelenergie grundsätzlich irrelevant, und auch der Ort der Bereitstellung ist für PRL und SRL nicht relevant. Für Tertiärregelenergie- TRL ist dieses aber sehr wohl der Fall - hier werden Einspeispunkte berücksichtigt38.

6.3 Redispatching

38 Vgl.: Swissgrid, S. 15
39 Vgl.: zur Übersicht: Swissgrid, S. 24 f

Überlegungen zur Nutzung von (dezentralem) DSM-Angebot für Redispatching sind in der Schweiz noch nicht angestellt worden.

6.4 Netzentgeltminimierung

Die Optimierung findet regelmässig nicht isoliert vor dem Hintergrund der Netzkosten statt, sondern vor dem Hintergrund der gesamten Energiekosten des jeweiligen Verbrauchers. Das kann aber zum Beispiel auch bedeuten, dass bei Anpassung der Vertragsinhalte zwischen Energielieferant, Netzbetreiber und Energieverbraucher ein bisher praktiziertes Optimierungsverhalten anzupassen ist. In dem Fall könnten Wärmepumpen, Batteriespeicher etc. verändert gesteuert werden.

6.5 Integration der Produktion aus Erneuerbaren Energiequellen

Die Integration erneuerbarer Energien bedeutet, dass z. B. auf NE 5 oder 7 bestehende Netzrestriktionen durch Einfluss auf Verbraucher beseitigt würden, ohne z. B. die Produktion abzuregeln. In der DENA-Studie II wird formuliert: «DSM kann in dieser Hinsicht eine wichtige Rolle spielen, um die Integration grosser Leistungen volatiler erneuerbarer Energieeinspeisung ins Elektrizitätssystem zu erleichtern und somit die volkswirtschaftlichen Gesamtkosten des Stromsektors zu verringern bzw. gering zu halten [...]. Mit dem fortschreitenden Ausbau volatiler erneuerbarer Energien gewinnt DSM zunehmend an Bedeutung»

40 Vgl.: DENA Netzflex II, S. 406
Aus heutiger Sicht sind in den Schweizer Verteilnetze erneuerbare Energien nur punktuell so stark ausgebaut, dass die Integration behindert würde. Allenfalls in einzelnen Netzabschnitten kommt es zu Problemen, wobei diese auch durch andere Massnahmen wie beispielsweise regelbare Ortsnetzstationen oft gehandhabt werden können.

Die Anforderungen an DSM und deren Einsatz hängen stark davon ab, wie die Netze gesteuert werden. Eine Echtzeitüberwachung der NE beispielsweise ist in der Schweiz faktisch nicht verbreitet. Ausserdem überwachen und steuern viele Verteilnetzbetreiber ihre Netze heute gar nicht in Echtzeit. Sofern die Produktion aus Erneuerbaren Energiequellen also zu kritischen Situationen im Netz führen würde, müssten diese zunächst einmal gemessen werden, bevor Steuerungsmassnahmen stattfinden.
7 Qualitative Bewertung der Sektoren

Vor der Quantifizierung der Grössenordnung des DSM-Potentials wird für alle volkswirtschaftlichen Sektoren eine qualitative Betrachtung durchgeführt. Erkenntnisse aus der Umfrage resp. aus den Interviews sind dabei miteingeflossen. Damit wird geschärft, wo überhaupt DSM-Potential vorhanden sein kann, um die Quantifizierung effizient durchzuführen und den Datenbedarf zu reduzieren.

7.1 Strukturierung der volkswirtschaftlichen Bereiche

Es gibt verschiedene Auflistungen von DSM-fähigen Prozessen, die aus einer Vielzahl unterschiedlicher Studien herrühren. Das EWI nennt beispielsweise die folgenden Prozesse\(^{41}\):

Tabelle 4: Übersicht DSM-fähige Prozesse nach EWI

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Prozesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>Aluminium-Elektrolyse, Zementmühle, Papiermaschine, Papierbeschichtung,</td>
</tr>
<tr>
<td></td>
<td>Papier-Kalender, Zellstoffmahlung, Altpapieraufbereitung, elektrischer</td>
</tr>
<tr>
<td></td>
<td>Lichtbogenofen, Chlor-Alkali-Elektrolyse, Ventilation, Druckluft</td>
</tr>
<tr>
<td>Dienstleistung</td>
<td>Klimaanlage, Ventilation, Kühlhaus, Kühlraum, Kältelanlage, Gefriertruhe</td>
</tr>
<tr>
<td>Haushalte</td>
<td>Kühlschrank, Gefriertruhe, Waschmaschine, Wäschetrockner, Spülmaschine,</td>
</tr>
<tr>
<td></td>
<td>Brauchwassererhitzer, Klimaanlage, Nachtspeicherheizung, Umlaufpumpe</td>
</tr>
<tr>
<td>Transport</td>
<td>Elektromobilität</td>
</tr>
<tr>
<td>Kommunal</td>
<td>Pump- und Belüftungsprozesse an Kläranlagen</td>
</tr>
</tbody>
</table>

Um die Ermittlung des Potentials für diese Studie durchzuführen, wurden die nachfolgenden Sektoren genutzt:

- Haushalte
- Landwirtschaft, Gartenbau sowie Dienstleistungen
- Verkehr,
- Industrie, verarbeitendes Gewerbe

\(^{41}\) Vgl.: Energiewirtschaftliches Institut der Universität Köln (EWI) (2012): „Untersuchungen zu einem zukunftsfähigen Strommarktdesign“. Köln, S. 36
Diese Gliederung ist orientiert an statistischen Daten bzw. Publikationen des Auftraggebers, um so eine bestmögliche Nutzbarkeit der Daten zu sichern. Den Sektoren untergeordnet sind jeweils spezifische Anwendungen und Prozesse, aber auch Querschnittsfunktionen wie „Druckluft“ und „Pumpen“.

7.2 Überblick

In diesem Kapitel werden unter anderem Rahmenbedingungen für DSM beleuchtet und Überlegungen zu den einzelnen Potentialstufen je Bereich angestellt. Weiterhin wird eine qualitative Einschätzung zum heutigen DSM-Potential und zur zukünftigen Entwicklung vorgenommen.

<table>
<thead>
<tr>
<th>Tabelle 5: Überblick der Sektoren für eine qualitative Einschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haushalte</td>
</tr>
<tr>
<td>Senkbarkeita und Verschiebbarkeit</td>
</tr>
</tbody>
</table>

43 Die nachfolgenden Aussagen, ob sich einzelne Prozessen und Anwendungen für DSM eignen, sind nur tendenziell zu verstehen.

44 Senkbarkeit bedeutet in diesem Zusammenhang die «Fähigkeit» einer Last zur Reduktion.
7.3 Haushalte

Gemäss der Elektrizitätsstatistik 2017 verbrauchten die Haushalte insgesamt 19.2 TWh Strom, was 32.9% des gesamten Stromverbrauchs in der Schweiz entspricht\(^{45}\). Damit sind die Haushalte der Sektor

mit dem grössten Stromverbrauch, zugleich aber mit einem nur sehr geringen, individuellen Verbrauch – was Auswirkungen hat auf die Wirtschaftlichkeit einer allfälligen Erschliessung von DSM-Potential.

Tabelle 6: Übersicht Prozesse und Anwendungen mit theoretischem Potential Haushalte

<table>
<thead>
<tr>
<th>Verwendungszweck / Branche</th>
<th>Senkbarkeit</th>
<th>Verschiebbarkeit wg. Speicherung bzw. Lagerung / Entkopplung</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>Ja</td>
<td>Ja</td>
<td>Wärmepumpe, Umwälzpumpe, elektrische Direktheizungen</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>Ja</td>
<td>Ja</td>
<td>Boiler</td>
</tr>
<tr>
<td>Klima, Lüftung, Hausotechnik</td>
<td>Ja</td>
<td>Ja</td>
<td>Ventilation</td>
</tr>
<tr>
<td>Waschen und Trocknen</td>
<td>Nein</td>
<td>Ja</td>
<td>Waschmaschine, Tumbler</td>
</tr>
<tr>
<td>Kühlen und Gefrieren</td>
<td>Nein</td>
<td>Ja</td>
<td>Betrieb Tiefkühlshrank</td>
</tr>
<tr>
<td>Kochen und Spülen</td>
<td>Nein</td>
<td>Ja</td>
<td>Spülmaschine</td>
</tr>
</tbody>
</table>

Das bei Haushalten resultierende DSM-Potential erscheint vorrangig für drei der vier Verwendungsarten geeignet zu sein, etwa für das Angebot im Systemdienstleistungsmarkt. Lediglich ein Einsatz für Redispatch-Zwecke ist aus Sicht der Autoren wegen der topografischen Anforderungen an die Bereitstellung des Potentials. Heute wird de-facto das Flexibilitätspotential aber ebenfalls noch genutzt, um Lastspitzen zu vermeiden und speziell die Leistungskomponente in den Netzentgelten des vorgelagerten Netzbetreibers. Das wurde so auch in der Befragung der EVUs wiedergegeben. Das ermittelte Potential ist also kein zusätzliches Potential, sondern ein Gesamtpotential. Um das Haushaltpotential nutzen zu können, müsste Flexibilität topografisch sehr selektiv geschaltet werden, zugleich müssten ausreichend grosse Leistungen geschaltet werden können.

47 Das kann beispielsweise an starren, familiären Zeitabläufen liegen, oder an eher scheinbar trivialen Gegebenheiten wie zum Beispiel begrenzter Menge an Geschirr.
48 Ausführungen zum wirtschaftlichen Potential finden sich in Abschnitt 5.4
49 Vgl.: Anhang 1
50 Vgl.: Anhang 1
Durch bereits heute vorhandene Massnahmen wie zum Beispiel den Einsatz von Rundsteueranlagen wird bereits ein Teil des DSM-Potentials genutzt.

7.4 Landwirtschaft, Gartenbau und Dienstleistungen

Aus Gründen der Verfügbarkeit von öffentlichen Datenquellen werden die Bereiche «Landwirtschaft und Gartenbau» einerseits und «Dienstleistungen» andererseits zusammengefasst. Insgesamt liegt der Stromverbrauch des Bereichs Landwirtschaft und Gartenbau bei rund 1 TWh, verteilt auf über 51'000 Betriebe, so dass ein spezifischer Stromverbrauch von durchschnittlich ca. 20 MWh verbleibt. Im Dienstleistungssektor werden zusätzlich rund 15.7 TWh Strom pro Jahr verbraucht, wobei dieser Sektor hinsichtlich Grösse, Struktur und Branche stark divergiert.\(^51\)

Der primäre Sektor «Landwirtschaft und Gartenbau» in der Schweiz wird hinsichtlich Stromverbrauch überwiegend von der Landwirtschaft geprägt, «Gartenbau» ist vernachlässigbar. Die landwirtschaftlichen Betriebe in der Schweiz sind sehr heterogen, sowohl was ihre Grösse angeht, als auch ihre Spezialisierung z. B. in Milchwirtschaft, Mastbetriebe, Ackerbau.

Tabelle 7: Übersicht Prozesse und Anwendungen mit theoretischem Potential Landwirtschaft und Gartenbau

<table>
<thead>
<tr>
<th>Prozesse und Anwendungen</th>
<th>Senkbarkeit</th>
<th>Verschiebbarkeit wg. Speicherung bzw. Lagerung / Entkopplung</th>
<th>Beispiele für Anwendungen und Prozesse(^52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>Ja</td>
<td>Ja</td>
<td>Heizstrahler (Hallenheizung)</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>Nein</td>
<td>Ja</td>
<td>Boiler</td>
</tr>
<tr>
<td>Prozesswärme</td>
<td>Nein</td>
<td>Ja</td>
<td>Trocknungsprozesse</td>
</tr>
<tr>
<td>Klima, Lüftung und Haustechnik</td>
<td>Ja</td>
<td>Ja</td>
<td>Ventilation geschlossener Ställe</td>
</tr>
<tr>
<td>Antriebe, Prozesse</td>
<td>Nein</td>
<td>Ja</td>
<td>Rührwerke, Melkmaschinen</td>
</tr>
</tbody>
</table>

\(^51\) Elektrizitätsstatistik 2017, S. 26

\(^52\) Vgl. u. a.: Energiewirtschaftliches Institut an der Universität zu Köln e.V. EWI (Hrsg.) (2012): "Untersuchungen zu einem zukunftsfähigen Strommarktdesign: im Auftrag des Bundeswirtschaftsministeriums". Köln, S. 36

Auch im Dienstleistungsbereich ist DSM-Potential vorhanden, was auch durch Antworten im Rahmen der EVU-Umfrage bestätigt wurde. Allerdings sind hier die Besonderheiten der Leistungserstellung zu berücksichtigen, insbesondere die weitgehende Nicht-Speicherbarkeit. Dienstleistungen können faktisch nicht oder nur in Einzelfällen «auf Vorrat» erbracht werden, da die Lagerfähigkeit ist nicht gegeben. Der Stromverbrauch wird verursacht durch die zeitlich unmittelbar damit verbundene Nachfrage der Kunden. Aus Sicht der Autoren sind im Dienstleistungsbereich maximal fünf Prozessstypen bzw. Anwendungen theoretisch geeignet, für DSM herangezogen zu werden. Die befragten EVUs haben bisher das Flexibilitätspotential im Dienstleistungsbereich weder systematisch erhoben, noch genutzt.

53 Dieses ist ein gutes Beispiel dafür, dass sich energieverbrauchende Prozesse durchaus ändern können, so dass auch das DSM-Potential im Zeitablauf ändert.

54 Vgl.: Anhang 2

55 Vgl. u. a.: EWI 2012, S. 36

7.5 Industrie und Verarbeitendes Gewerbe

<table>
<thead>
<tr>
<th>Tabelle 9: Übersicht Stromverbräuche in GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nahrungsmittel</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Verbrauch total</td>
</tr>
<tr>
<td>Verbrauch spezifisch je Betriebsstätte</td>
</tr>
</tbody>
</table>

Auch in den einschlägigen DSM-Studien in anderen Ländern wurde der Schwerpunkt auf das Potential in der Industrie und im Verarbeitenden Gewerbe gelegt. Anhand der Verbräuche in obiger Tabelle wird klar, wie sehr sich die Schweizer Industrie strukturell von der in anderen Ländern unterscheidet. Zum Beispiel haben in der deutschen Stahlindustrie oder in der Chemiebranche einzelne, grosse Stahlwerke...
und Chemieunternehmen einen Strombedarf, der über dem Bedarf der ganzen entsprechenden Branche in der Schweiz liegt.

Tabelle 10: Übersicht Prozesse und Anwendungen mit theoretischem Potential Industrie und verarbeitendes Gewerbe58

<table>
<thead>
<tr>
<th>Prozesse und Anwendungen</th>
<th>Senkbarkeit</th>
<th>Verschiebbarkeit wg. Speicherung bzw. Lagerung / Entkopplung</th>
<th>Beispiele für Anwendungen und Prozesse59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>Ja</td>
<td>Ja</td>
<td>Hallenheizung</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>Nein</td>
<td>Ja</td>
<td>Maischeherstellung</td>
</tr>
<tr>
<td>Prozesswärme</td>
<td>Nein</td>
<td>Ja</td>
<td>Glühprozesse</td>
</tr>
<tr>
<td>Klima, Lüftung und HT</td>
<td>Ja</td>
<td>Ja</td>
<td>Hallenbeleuchtung</td>
</tr>
<tr>
<td>Antriebe, Prozesse</td>
<td>Nein</td>
<td>Ja</td>
<td>Bohren, Drehen</td>
</tr>
</tbody>
</table>

Das technische Potential liegt deutlich unter dem theoretischen Potential, was u. a. an der Gleichzeitigkeit der Inanspruchnahme der elektrischen Leistung in Verbindung mit den spezifischen Prozessen liegt. Zum Beispiel können Glühprozesse im Maschinenbau nicht beliebig gesteuert werden, ohne die Qualität des Produktes einzuschränken. Zudem gibt es in einzelnen der oben genannten Abteilungen besonders starke, zum Teil rechtlich begründete Restriktionen, die zum Beispiel aus Prozessrestriktionen bzw. der «Guten Herstellungspraxis» (GHP) herrühren. Unter anderem die Pharmabranche ist hiervon betroffen. In der Umfrage der Autoren wurde auch erwähnt, dass z. B. bei

58 Der Stromverbrauch für Prozesswärme wird den einzelnen Branchen zugerechnet.
59 Vgl. u. a.: EWI 2012, S. 36
60 Vgl.: Anhang 2
der Wasserversorgung grundsätzlich vorhandenes Flexibilitätspotential Restriktionen unterworfen ist, da das Trinkwasser in Speichern regelmässig umgewälzt werden muss.

Der Stromverbrauch der Industrie ist zudem stark von konjunkturellen Einflüssen abhängig, bei geringer Auslastung können die Stromverbraucher entsprechend auch nur zu geringerem Mass gesteuert werden. Dieses wurde auch im Rahmen der Befragung bestätigt. Das bedeutet, dass beispielsweise die Flexibilität, welche durch Schweizer Automobilzulieferer bereitgestellt würde, von der Konjunktur der Fahrzeughersteller abhängt.

Für die Abwasserreinigungsanlagen wurde bemerkenswerterweise noch erwähnt, dass eher zufällige Faktoren wie das Wetter und Niederschläge den Betrieb und damit das nutzbare Potential beeinflussen können.
7.6 Verkehr

Der Verkehrssektor verursacht einen Stromverbrauch von rund 4.7 TWh, wobei rund 3.55 TWh auf Schienenverkehr und auf öffentliche Beleuchtung entfallen\(^\text{61}\). Insbesondere der Stromverbrauch für Fahrstrom und öffentliche Beleuchtung wird kein DSM-Potential zulassen.

Theoretisches Potential ist künftig im Bereich der individuellen Elektromobilität in signifikantem Umfang vorhanden.

Tabelle 11: Übersicht Prozesse und Anwendungen mit theoretischem Potential Verkehr

<table>
<thead>
<tr>
<th>Prozesse und Anwendungen</th>
<th>Senkbarkeit</th>
<th>Verschiebbarkeit wg. Speicherung bzw. Lagerung / Entkopplung</th>
<th>Beispiele für Anwendungen und Prozesse(^\text{62})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beleuchtung</td>
<td>Nein</td>
<td>Nein</td>
<td>Strassenbeleuchtung</td>
</tr>
<tr>
<td>Lüftung</td>
<td>Nein</td>
<td>Ja</td>
<td>Lüftung Tunnelanlagen</td>
</tr>
<tr>
<td>Schienenverkehr(^\text{63})</td>
<td>Nein</td>
<td>Nein</td>
<td>SBB</td>
</tr>
<tr>
<td>Elektrische Trolleybusse</td>
<td>Nein</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Individuelle Elektromobilität</td>
<td>Nein</td>
<td>Ja</td>
<td>Ladestationen</td>
</tr>
<tr>
<td>Sonstige</td>
<td>Nein</td>
<td>Nein</td>
<td></td>
</tr>
</tbody>
</table>

Im Zusammenhang mit dem Verkehrssektor wird allein der Individualverkehr mit Elektromobilität betrachtet. Heute ist die Elektromobilität in der Schweiz kaum verbreitet, von einem starken Wachstum ist aber jedoch auszugehen. Dennoch haben bereits zwei befragte EVU angegeben, die Last an Ladesäulen manuell bzw. automatisch steuern zu können und auch eine Notfallsteuerung zu besitzen.

Elektromobilität wird in der Schweiz, anders als beispielsweise in Deutschland oder Frankreich, mit eher nur geringen, täglichen Fahrdistanzen verbunden, so dass auch Ladeinfrastruktur mit eher niedriger Leistung oft reichen kann, die tägliche Mobilität sicher zu stellen. Das bedeutet, dass auch die

\(^{61}\) Vgl.: BFE (2017), S. 26
\(^{62}\) Vgl. u. a.: EWI 2012, S. 36
\(^{63}\) BET erwartet, dass bestimmte betriebliche Anforderungen (z. B. Fahrpläne, Sicherheit) in Verbindung mit technischen Rahmenbedingungen (z. B. nicht von aussen steuerbare Heizungssysteme in den Waggons) hier kein theoretisches Potential entstehen lassen.
Ladeinfrastruktur nur für einen relativ kurzen Zeitraum genutzt werden. Wird also Flexibilität in Form von DSM bewirtschaftet, kann die für Mobilitätszwecke nötige Elektrizität schnell gespeichert werden.

Das verlässliche technische Potential dürfte deutlich unterhalb des theoretischen Potentials liegen, z. B. wegen des jeweils begrenzten Ladestrombedarfs, oder auch wegen der starken, zeitlichen und räumlichen Durchmischung des Ladeverhaltens.

Während das theoretische und das technische Potential von geringem Niveau aus wachsen dürften, ist das soziotechnische Potential heute kaum abschätzbar. Insbesondere liegen noch keine Erfahrungswerte zum Beispiel zur statistischen Verfügbarkeit der nutzbaren Fahrzeugflotte, oder zum Ladeverhalten vor. Dieses wurden von den im Rahmen der Studie befragten EVUs ausdrücklich erwähnt. Zum Beispiel herrscht Unklarheit darüber, wann die Fahrzeugbesitzer ihrer Fahrzeuge laden und nutzen wollen, bzw. welche Einschränkungen sie bereit sind hinzunehmen. Es wird zudem erwartet, dass faktisch nur die Fahrzeuge für die Bereitstellung von Flexibilität genutzt werden können, welche längere Zeit parkiert sind, also zum Beispiel Privatfahrzeuge in der Nacht. Das wird dazu führen, dass abhängig von der Tageszeit deutlich andere Flexibilitätsmengen angeboten werden64.

64 Vgl.: Anhang 1
8 Ergebnisse der Quantifizierung des theoretischen, technischen und soziotechnischen Potentials

Eine sichere Quantifizierung erweist sich über alle untersuchten Potentialbegriffe als komplex und aufwändig. Es wurde dennoch versucht, nach den Berechnungsmethoden aus Kapitel 5 das theoretische, technische sowie das soziotechnische Potential bestmöglich zu quantifizieren und einzugrenzen, um einen Ansatzpunkt für weitere Diskussionen zu geben. Abhängig von den weiteren Diskussionen zum Thema DSM in der Schweiz muss zusätzlicher, unter Umständen hoher Aufwand für die präzisere Quantifizierung geleistet werden.

Für weitere Studien wäre es ratsam, u. U. mit anderen Methoden (z. B. Marktforschung oder Messung energietechnischer Parameter wie z. B. Stromverbräuchen im Zeitablauf) eine zusätzliche Datenerhebung durchzuführen. Eine vollständige, durchgängige und den realen Produktionsbedingungen angepasste Datenerhebung wäre künftig jedoch nur möglich, wenn die Unternehmen dies für ihre Prozesse auch selber erheben.

8.1 Gesamtbetrachtung Sektoren

Schliesslich ist bei der Potentialermittlung zu berücksichtigen, welche Anforderungen die definierten Anwendungszwecke stellen. Da diese regelmässig hoch sind, müssen das technische Potential und die weiteren Potentialstufen dieses berücksichtigen, weshalb die Vergleichmässigung erfolgt. In dieser Studie erfolgt das für die vier Kombinationen aus Sommer und Winter einerseits und Tag und Nacht andererseits. Die Vergleichmässigung stellt sicher, dass die ausgedrückten Potentialwerte auch eine Relevanz haben.

66 Waschmaschinen und Tumbler benötigen beispielsweise nur recht kurzzeitig hohe elektrische Leistungen.

67 Offensichtliches Beispiel ist der Betrieb von Verbrauchern für Heiz- und Wärmewechsel.

68 Sofern die Prämisse der hohen Verfügbarkeit in den genannten Zeiträumen abgeschwächt würde, wäre das technische Potential entsprechend höher.

In den folgenden Kapiteln wird auf die Berechnungen der einzelnen Sektoren eingegangen, basierend auf den oben eingeführten Berechnungsmethodiken und mit Hinweisen zu den jeweiligen Datengrundlagen.

8.2 Haushalte

8.2.1 Gesamtbetrachtung Potentiale

Für den Bereich «Haushalte» lassen sich für die in Tabelle 6 definierten DSM-fähigen Prozesse entweder mit Methode A oder mit Methode C (siehe Kapitel 5.1.2) die theoretische Potentiale errechnen bzw. validieren70. Wenn alle Leistungen aufaddiert werden, so resultiert in der Schweiz ein theoretisches

69 Minimalwerte: hell; Maximalwerte: dunkel

70 Die Methode C wurde als primäre Methode zur Potentialermittlung genutzt. Wo möglich, wurden mittels Methode C Validierungen durchgeführt.
Potential für DSM von rund 20'350 MW im Haushaltsbereich, was allein deutlich über der Last des Schweizer Stromverbrauchs liegt.

Abbildung 9: Überblick DSM-Potentiale Haushalte

Das maximal zur Verfügung stehende, vergleichmässigte und dadurch für die Anwendungszwecke verlässliche, technische Potential beträgt 440.6 MW, was 2.2% des theoretischen Potentials entspricht. Die installierte, elektrische Leistung ist hoch – für Flexibilität steht aber nur wenig Leistung technisch zur Verfügung. Beispielsweise werden Tumbler und Waschmaschinen in der Schweiz bei hoher zeitlicher Streuung eingesetzt.

Bei Haushalten gehen die Autoren davon aus, dass - über alle grundsätzlich zur Lastbeeinflussung mittels DSM geeigneten Prozesse betrachtet - ein hoher Akzeptanzfaktor von gut 70% (Mittelwert) für die Prozesse vorhanden ist. Es resultiert ein soziotechnisches Potential von maximal rund 311 bzw. 344 MW für Abschalten und Zuschalten. Diese Werte entsprechen ca. 1.6% des gesamten theoretischen Potentials.

8.2.2 Theoretisches Potential

Gründe für das hohe theoretische Potential bei Waschen und Trocknen liegen zum einen darin, dass die Anlagen eine relativ hohe Leistungsaufnahme haben, und zum anderen darin, dass die Anzahl der Anlagen recht hoch ist.

Aufgrund der recht guten Datenlage zur Anzahl von Geräten, zum Verbrauch etc. im Haushaltsbereich müssen hier bei der Potentialermittlung nicht zwingend Minimal- und Maximalwerte angegeben werden, wie es in den anderen Bereichen der Fall ist.

8.2.3 Technisches Potential

71 Diese Schätzung wurde von B E T stärker verifiziert, da aufgrund der etwas besseren Datenlage verschiedene Berechnungsmethoden für das theoretische Potential genutzt werden könnten.

Das vergleichmässigte, technische Potential manifestiert sich überwiegend im Bereich der Raumwärme, wo heute auch schon viele Nutzungen vorhanden sind, beispielsweise die Steuerung von Wärmepumpen. Die einzelnen Potential-Höchstwerte treten nicht in den gleichen Perioden auf. Bei Raumwärme liegt das technische Potential im Winter tagsüber bei maximal 356.2 MW, wohingegen bei Warmwasser der Höchstwert in der Nacht im Winter bei 64.6 MW liegt. Der Höchstwert für Waschen und Trocknen liegt stets zwischen ca. 2 und ca. 6 MW, für Kühlen und Gefrieren bei rund 74 MW in allen vier Perioden. Diese Verbraucher werden zeitlich verteilt, nicht in der jeweiligen, gesamten Periode ununterbrochen und dann auch nur jeweils für kurze Zeiten benötigt.\(^{73}\)

\(\text{Tabelle 12: Zeitliche Verteilung Technischer Potentiale Haushalte}\\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>21.8</td>
<td>43.6</td>
<td>356.2</td>
<td>263.1</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>3.7</td>
<td>64.3</td>
<td>3.9</td>
<td>64.6</td>
</tr>
<tr>
<td>Prozesswärme</td>
<td>5.6</td>
<td>1.7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Waschen und Trocknen</td>
<td>6.1</td>
<td>2.0</td>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Klima, Lüftung, Haustechnik</td>
<td>6.1</td>
<td>2.0</td>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Antriebe, Prozesse</td>
<td>73.0</td>
<td>73.0</td>
<td>73.5</td>
<td>73.5</td>
</tr>
</tbody>
</table>

\(^{73}\) Hoch energieeffiziente Geräte senken den Stromverbrauch (elektrischer Arbeit) deutlich ab, haben aber u. U. weiter hohe Leistungsaufnahmen.
Bei «Waschen und Trocknen» ist kaum ein Beitrag zum verlässlichen, technischen Potential zu erwarten, trotz der hohen, installierten Leistung. Das liegt daran, dass die einzelnen Geräte nur geringe Volllastbenutzungsstunden haben und die Geräte zeitlich stark verteilt betrieben werden.

8.2.4 Soziotechnisches Potential

Abbildung 12: Soziotechnisches Potential Haushalte

Es wurden keine saisonabhängigen Akzeptanzabschläge genutzt. Vielmehr wurden für die jeweiligen Richtungen angesetzt:

- Raumwärme: 80% (beide Richtungen)

74 Bezogen auf kurze Zeiträume wie z. B. „Mittagsspitze“ kann der Beitrag aber durchaus höher sein, was auch der Grund ist, dass heute Steuerungen bei dieser Art der Flexibilität erfolgen. Für z. B. den Anwendungszweck „Redispatch“ hilft das aber nicht weiter: Die Flexibilität wäre dann u. U. zum fraglichen Zeitpunkt nicht verfügbar.
• Warmwasser: 80% (beide Richtungen)
• Klima, Lüftung, Haustechnik: 75% (Abschalten) bzw. 100% (Zuschalten)75
• Kühlen und Gefrieren: 75% (beide Richtungen)
• Waschen und Trocknen: 50% (Reduzierung) bzw. 0% (Erhöhung)

8.3 Landwirtschaft, Gartenbau und Dienstleistungen

8.3.1 Gesamtbetrachtung Potentiale

![Abbildung 13: Minimale und maximale DSM-Potentiale Landwirtschaft, Gartenbau und Dienstleistungen77]

Da gewisse Prozesse wie zum Beispiel Raumwärme sehr tiefe Benutzungsstunden aufweisen können, andererseits Klima- oder Lüftungsprozesse hohe Werte ergeben können, ergibt sich eine grosse Bandbreite an theoretischem Potential (rund 7'840 MW bis 19'261 MW).

75 Abschalten = positive Richtung; Zuschalten = negative Richtung

77 Minimalwerte: hell; Maximalwerte: dunkel

Um das soziotechnische Potential in positiver und negativer Richtung zu erhalten, wurde wiederum einen Akzeptanzfaktor pro Prozess eingerechnet. Dieser bildet ab, ob ein Unternehmen ein Eingreifen (Zu- oder Abschalten eines Prozesses) als störend empfinden würde. Das soziotechnische Potential liegt für Abschalten gerundet zwischen 115 und 304 MW. In diesem Sektor wird davon ausgegangen, dass es zwischen Ab- und Zuschalten keine signifikanten Unterschiede vorliegen.

8.3.2 Theoretisches Potential

Im Bereich «Landwirtschaft, Gartenbau und Dienstleistungen» liegt ebenfalls beträchtliches, theoretisches DSM-Potential. Das theoretische Potential weist insbesondere bei der Warmwassererzeugung und bei Antrieben und Prozessen sehr hohe Werte auf, allerdings ist die Spannbreite bzw. die Unsicherheit sehr hoch. Besonders die installierten Leistungen in der Landwirtschaft sind nicht ermittelbar, ebenso liegen keine verlässlichen Daten vor, wie viele Stunden die einzelnen Antriebe und Prozesse wirklich laufen.

![Abbildung 14: Minimales und maximales theoretisches Potential Landwirtschaft, Gartenbau und Dienstleistungen](image-url)

78 Minimalwerte: hell; Maximalwerte: dunkel
8.3.3 Technisches Potential

Da Unternehmen ihre Leistungen primär während des klassischen Arbeitszeiten während des Tages erbringen, ist das technische Potential während des Tages höher als in der Nacht. Aufgrund der Beiträge von vor allem der Warmwassererzeugung und etwas weniger die Raumwärme-Prozesse, sind die Werte zudem im Winter höher.

Abbildung 15: Vergleichmässigtes Technisches Potential Landwirtschaft, Gartenbau und Dienstleistungen79

Tabelle 13: Zeitliche Verteilung Technischer Potentiale Landwirtschaft, Gartenbau und Dienstleistungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>3.6 – 5.9</td>
<td>8.0 – 13.3</td>
<td>32.1 – 53.6</td>
<td>32.1 – 53.6</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>2.3 – 4.6</td>
<td>35.5 – 70.5</td>
<td>2.4 – 4.8</td>
<td>35.7 – 70.9</td>
</tr>
<tr>
<td>Prozesswärme</td>
<td>29.1 – 48.5</td>
<td>4.1 – 6.8</td>
<td>29.3 – 48.8</td>
<td>4.1 – 6.9</td>
</tr>
<tr>
<td>Klima, Lüftung, Haustechnik</td>
<td>155.9 – 467.8</td>
<td>78.0 – 233.9</td>
<td>156.8 – 470.4</td>
<td>78.4 – 235.2</td>
</tr>
<tr>
<td>Antriebe, Prozesse</td>
<td>56.6 – 169.8</td>
<td>4.0 – 12.1</td>
<td>56.9 – 170.8</td>
<td>4.1 – 12.2</td>
</tr>
</tbody>
</table>

Klima, Lüftung und Haustechnik weisen hier das höchste Potential auf, und zwar sowohl im Sommer, als auch im Winter.

79 Minimalwerte: hell; Maximalwerte: dunkel
Eine wachsende Rolle beim Stromverbrauch nehmen in der Schweiz auch Data-Center (Rechenzentren) ein, welche diesem Sektor zuzuordnen sind. 2013 wurde der Strombedarf auf rund 1.6 TWh ermittelt, wovon rund 37% auf Kühlung, Lüftung entfallen – wobei aber Einsparungen und Effizienzsteigerungen möglich sind²⁸. Auch hier ist aber damit zu rechnen, dass durch Energieeffizienz das DSM-Potential begrenzt wird. Bezogen auf die 1.6 TWh kann davon ausgegangen werden, dass rund 0.6 TWh des Stromverbrauchs in Rechenzentren für DSM nutzbar wären. Dieses entspräche bei 5'000 bis 7'500 Vollbenutzungsstunden für Kühlung und Lüftung rund 80 bis 120 MW technisches DSM-Potential, welches aber relativ kontinuierlich zur Verfügung stünde.

8.3.4 Soziotechnisches Potential

Abbildung 16: Soziotechnisches Potential Landwirtschaft, Gartenbau und Dienstleistungen

Bei Raumwärme und Warmwasser wird eine Akzeptanz von 80% in beide Richtungen erwartet, bei Klima etc. von 50% und bei Antrieben, Prozessen und Prozesswärme von 10%.

8.4 Industrie und Verarbeitendes Gewerbe

8.4.1 Gesamtbetrachtung Potentiale

Hinzu kommt die Heterogenität des Sektors. Im Sektor «Industrie und verarbeitendes Gewerbe» ist die Heterogenität über die Verbrauchsstrukturen und Benutzungsstunden der jeweiligen Prozesse viel größer als bei Dienstleistungen und darum nicht abschätzbar. Beispielsweise ist die Zahl der Benutzungsstunden bei Prozesswärme in bestimmten Unternehmen der Nahrungsmittelindustrie unter Umständen sehr hoch, während andere Nahrungsmittelunternehmen oder gar zum Beispiel ein Textil-Unternehmen potentiell viel weniger Benutzungsstunden verzeichnen.

8.4.2 Theoretisches Potential

Das grösste, theoretische DSM-Potential ist im Bereich Chemie und Pharma, Nahrungsmittel und Mineralien zu erwarten. Das Potential ist aber unter Umständen über eine grosse Anzahl an Betriebsstätten verteilt. Die Spreizung zwischen Maximal- und Minimalwerten rührt daher, dass keinerlei übergreifende, klare Aussagen über die Benutzungsstunden (VBH) vorhanden sind, zugleich ist es aber auch nicht möglich, mittels anderen Berechnungsverfahren als dem Verfahren C zur Ermittlung des technischen Potentials zu verlässlicheren Daten zu kommen.

81 Minimalwerte: hell; Maximalwerte: dunkel
8.4.3 Technisches Potential

Analog zu den Dienstleistungen ist zu erwarten, dass das technische Potential vor allem untertags vorhanden ist und im Sommer leicht höher ist.

Abbildung 18: Theoretisches Potential Industrie und Verarbeitendes Gewerbe

Abbildung 19: Vergleichmässiges Technisches Potential Industrie und verarbeitendes Gewerbe

82 Minimalwerte: hell; Maximalwerte: dunkel
83 Minimalwerte: hell; Maximalwerte: dunkel

Tabelle 14: Zeitliche Verteilung Technischer Potentiale Industrie und Verarbeitendes Gewerbe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nahrung</td>
<td>56.3 – 169.0</td>
<td>56.3 – 169.0</td>
<td>56.3 – 169.0</td>
<td>56.3 – 169.0</td>
</tr>
<tr>
<td>Bekleidung/Textilien</td>
<td>6.3 – 9.4</td>
<td>1.3 – 1.9</td>
<td>6.3 – 9.5</td>
<td>1.3 – 1.9</td>
</tr>
<tr>
<td>Papier</td>
<td>42.2 – 126.7</td>
<td>42.2 – 126.7</td>
<td>42.5 – 127.4</td>
<td>42.5 – 127.4</td>
</tr>
<tr>
<td>Chemie/ Pharma</td>
<td>137.3 – 411.9</td>
<td>137.3 – 411.9</td>
<td>138.0 – 414.1</td>
<td>138.0 – 414.1</td>
</tr>
<tr>
<td>Mineralien</td>
<td>103.2 – 158.1</td>
<td>0.0 – 51.6</td>
<td>103.8 – 259.5</td>
<td>0.0 – 51.9</td>
</tr>
<tr>
<td>Metalle</td>
<td>88.0 – 163.4</td>
<td>88.0 – 163.4</td>
<td>88.4 – 164.3</td>
<td>88.4 – 164.3</td>
</tr>
<tr>
<td>Metallerzeugnisse</td>
<td>25.0 – 37.5</td>
<td>5.0 – 7.5</td>
<td>25.2 – 37.7</td>
<td>5.0 – 7.6</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>50.0 – 75.1</td>
<td>5.5 – 8.3</td>
<td>50.3 – 75.3</td>
<td>5.5 – 8.3</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>37.6 – 56.4</td>
<td>4.1 – 6.2</td>
<td>37.8 – 56.7</td>
<td>4.2 – 6.2</td>
</tr>
<tr>
<td>Energie/ Wasser</td>
<td>12.6 – 18.8</td>
<td>1.4 – 2.1</td>
<td>12.6 – 18.9</td>
<td>1.4 – 2.1</td>
</tr>
<tr>
<td>Bau</td>
<td>30.0 – 90.1</td>
<td>0.6 – 1.9</td>
<td>17.6 – 52.8</td>
<td>0.6 – 1.9</td>
</tr>
</tbody>
</table>

8.4.4 Soziotechnisches Potential

Das soziotechnische Potential ist in absoluten Werten ähnlich hoch wie in den anderen beiden Bereichen, d. h bei 124 bis 290 MW Zudem wird nicht erwartet, dass die Richtung der Inanspruchnahme deutliche Unterschiede aufweist, allenfalls in einzelnen Branchen sind hier Differenzierungen zweifelsfrei sinnvoll. Es wird erwartet, dass die Akzeptanz bis auf Weiteres eher gering ist, was die deutlich tieferen Werte gegenüber dem technischen Potential erklärt. Dieses ist verbunden insbesondere mit Informationsdefiziten, die weiter unten im Zusammenhang mit den Hemmnissen thematisiert werden. Dieses ist auch gestützt auf die Aussagen in der Befragung der Branchenverbände.
Es wurden keine saisonabhängigen Akzeptanzabschläge genutzt. Vielmehr wurden für die jeweiligen Richtungen angesetzt:

- Nahrung: 10% (beide Richtungen)
- Chemie / Pharma: 10% (Abschalten) bzw. 15% (Zuschalten)
- Papier: 20% (Abschalten) bzw. 30% (Zuschalten)
- Energie / Wasser: 10% (Abschalten) bzw. 30% (Zuschalten)
- Bau: 10% (beide Richtungen)

Für alle anderen Branchen wurde eine Akzeptanz von 30% in beide Richtungen geschätzt.

8.5 Verkehr

8.5.1 Gesamtbetrachtung Potentiale

Im betrachteten Verkehrssektor, der für diese Studie primär die Elektromobilität umfasst, liegt das theoretische Potential heute bei ca. 140 MW. Diese Zahl lässt sich leicht ermitteln über die Anzahl der Elektrofahrzeuge, deren spezifischen Stromverbrauch und Annahmen zum Ladeverhalten. Das technische Potential und auch das soziotechnische Potential sind hingegen praktisch null, wodurch hier nicht weiter darauf eingegangen wird. Die Quantifizierung ist eine Momentaufnahme, und stellt keine Aussage darüber das Flexibilitätspotential aus dem Bereich der (individuellen) Elektromobilität in der Zukunft.
Es ist aber für die Zukunft zu erwarten, dass alle Potentialwerte ansteigen. Unsicher bleibt aber bis auf Weiteres zum Beispiel, wie die Akzeptanz der Fahrzeugbesitzer ist, ihre Fahrzeuge im Rahmen von DSM steuern zu lassen, oder wann die Fahrzeuge überhaupt technisch für Ladevorgänge zur Verfügung stehen. Es ist zum Beispiel zu erwarten, dass viele Elektrofahrzeuge, deren Besitzer über private Ladestationen verfügen, in der Nacht oder am Abend geladen werden, diese Vorgänge werden aber jeweils nur wenige Stunden dauern. Über eine – heute noch unklare – Durchmischung des Ladeverhaltens kann ein gewisses Potential erreicht werden. Wie das Ladeverhalten an öffentlichen oder halböffentlichen Ladesäulen sein wird, ist unklar.

Schließlich müssen auch die technischen Bedingungen gegeben sein, die Fahrzeuge bzw. deren Batterien für DSM zu nutzen – beispielsweise muss die Ladeeinrichtung bzw. das Fahrzeug entsprechend angesteuert werden können.

8.6 Ableitung des technischen und soziotechnischen Potentials für die Grossregionen

8.6.1 Haushalte

Für Haushalte wurde als Schlüsselung die Wohnbevölkerung in der jeweiligen Grossregion herangezogen. Im Einzelnen dienten die folgenden Werte der Schlüsselung:

- Genferseeregion: 19.2%
- Espace Mittelland: 22.0%
- Nordwestschweiz: 13.6%
- Zürich: 17.7%
- Ostschweiz: 13.8%
- Zentralschweiz: 9.5%
- Tessin: 4.2%

In den verschiedenen Grossregionen liegt das technische Potential aus DSM bei Haushalten zwischen rund 50 und rund 250 MW, wobei die einwohnerstärksten Grossregionen logischerweise die höchsten Werte aufweisen.

Abbildung 22: Technisches Potential Haushalte pro Grossregion

8.6.2 Landwirtschaft, Gartenbau und Dienstleistungen

Für diesen Sektor wurde als Schlüsselung die Anzahl der Betriebe in der jeweiligen Grossregion herangezogen. Im Einzelnen dienten die folgenden Werte der Schlüsselung:

- Genferseeregion: 19.0%
- Espace Mittelland: 20.2%
- Nordwestschweiz: 12.0%
- Zürich: 18.0%
- Ostschweiz: 13.8%
- Zentralschweiz: 11.2%
- Tessin: 5.7%
Wie bereits bei den Haushalten, führen auch hier die Genferseeregion, der Espace Mittelland, Zürich und die Nordwestschweiz das DSM-Potential an.

Die Verhältnisse zwischen Zu- und Abschaltpotential ändern sich nicht, wie der Abbildung 26 zu entnehmen ist.

Abbildung 25: Technisches Potential (minimal und maximal) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion

Abbildung 26: Soziotechnisches Potential (Abschalten) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion
Abbildung 27: Soziotechnisches Potential (Zuschalten) Landwirtschaft, Gartenbau, Dienstleistungen pro Grossregion

8.6.3 Industrie und Verarbeitendes Gewerbe

Für diesen Sektor wurde als Schlüsselung die Anzahl der Betriebe in der jeweiligen Grossregion herangezogen. Im Einzelnen dienten die folgenden Werte der Schlüsselung:

- Genferseeregion: 17.2%
- Espace Mittelland: 22.3%
- Nordwestschweiz: 12.2%
- Zürich: 13.9%
- Ostschweiz: 18.2%
- Zentralschweiz: 10.3%
- Tessin: 5.8%

Abbildung 28: Technisches Potential (minimal und maximal) Industrie und verarbeitendes Gewerbe pro Grossregion

Abbildung 29: Soziotechnisches Potential Industrie und Verarbeitendes Gewerbe pro Grossregion
8.6.4 Verkehr

Das aktuelle Potential ist überall sehr gering. Es wird aber speziell auch in den Ballungsräumen in der Zukunft mit einer raschen Zunahme zu rechnen sein, so dass auf Elektromobilität gestützte Flexibilität einen deutlich höheren Beitrag zu DSM wird liefern können, als heute.

Entsprechend der Verteilung der Elektrofahrzeuge hat Zürich das höchste DSM-Potential aus Elektromobilität.

Abbildung 30: Soziotechnisches Potential Industrie und Verarbeitendes Gewerbe pro Grossregion

Abbildung 31: Technisches Potential Elektromobilität pro Grossregion
Abbildung 32: Soziotechnisches Potential
9 Erschliessungsaufwand als Faktor für wirtschaftliches Potential

Für die Bezifferung des wirtschaftlichen Potentials können, wie bereits angedeutet, hier keine abschließenden Quantifizierungen vorgenommen werden. Beispielsweise ist es unklar, welche Opportunitätskosten im Dienstleistungssektor oder in der Industrie vorhanden sind, wenn Flexibilitätspotentiale für DSM genutzt werden. Auch ist es beispielsweise unklar, wie sich für die verschiedenen Anwendungszwecke die Erlöse darstellen. Hier sind zum Beispiel im Bereich der Regelenergie deutliche Marktveränderungen zu erwarten. Weiterhin ist unklar, wie sich die Preise für beide Anwendungen bei einem durch DSM erhöhten Angebot verändern würden.

Zum einen muss für die Nutzung von Flexibilität grundsätzlich Handlungsspielraum bestehen, im Betrieb der Anlagen nicht benötigte Kapazität zur Verfügung bzw. benötigte Kapazität abzustellen oder zeitlich zu verschieben. Weiterhin ist dann das Wirtschaftlichkeitskalkül einzubeziehen, und zwar aus der Perspektive derjenigen, welche über die Flexibilität verfügen können. Zum anderen ist aber eine steuer-technische Anbindung an eine Koordinationsstelle Vorbedingung um sicherzustellen, dass die Flexibilität systemdienlich eingesetzt wird. Damit müssen einerseits die flexiblen Kapazitäten (Prozesse, Anwendungen) geschaltet werden, zum anderen ist zu gewährleisten, dass keine unerwünschten Beeinträchtigungen des Betriebes auftreten. Solche Beeinträchtigungen können zum Beispiel Fehlchargen oder Anlageschäden sein, die beispielsweise entstehen würden, wenn in der Kunststoffverarbeitenden Industrie Spritzgussprozesse unterbrochen würden. Schliesslich sind Ressourcen nötig, um die Bereitstellung der flexiblen Kapazitäten zu organisieren und durchzuführen.

9.1 Definition des Erschliessungsaufwands

Der totale spezifische Erschliessungsaufwand \(C_{\text{tot spez}} \) der benötigten Informations- und Kommunikationstechnik (IKT) setzt sich aus zwei Komponenten zusammen. Einerseits aus den Investitionskosten \(C_{\text{inv spez}} \) und andererseits aus den fixen jährlichen Betriebskosten \(C_{\text{fix spez}} \). Diese beiden Komponenten variieren je nach Grösse eines Standorts, dessen flexibilisierbarer Leistung etc. stark. Vgl.: Steurer, S. 58 ff.
\[C_{\text{tot spez } i} = C_{\text{inv spez } i} + C_{\text{fix spez } i} \]

\(C_{\text{tot spez } i} \): totaler spezifischer Erschließungsaufwand pro DSM-Option

\(C_{\text{inv spez } i} \): spezifische Investitionskosten

\(C_{\text{fix spez } i} \): spezifische Fixkosten

Die spezifischen Investitionskosten pro Anlage \(C_{\text{inv spez } i} \) wiederum beinhalten die Kosten für Hardware \(C_{\text{ikt } i} \) wie Aktoren, Sensoren oder Automatisierungsstationen sowie deren Lizenzkosten. Hinzu kommen Implementierungskosten \(C_{\text{imp } i} \) für Programmierung, Montage und Inbetriebnahme bezogen auf das technische Potential.

\[C_{\text{inv spez } i} = C_{\text{ikt } i} + C_{\text{imp } i} \]

\(C_{\text{inv spez } i} \): spezifische Investitionskosten pro DSM-Option

\(C_{\text{ikt } i} \): Kosten der für die kommunikationstechnische Anbindung notwendigen Hardwarekomponenten

\(C_{\text{imp } i} \): Implementierungskosten für Montage, Inbetriebnahme und Programmierung

\(P_{\text{tech } i} \): technisches Potential

Die jährlich anfallenden spezifischen Fixkosten setzen sich zusammen aus den jeweiligen Instandhaltungskosten (operation and maintenance) \(C_{\text{om } i} \) und den entsprechenden Commodities für Strom und Kommunikation \(C_{\text{comm } i} \).

\[C_{\text{fix spez } i} = \frac{C_{\text{om } i} + C_{\text{comm } i}}{P_{\text{tech } i}} \]

\(C_{\text{fix spez } i} \): jährlich anfallende spezifische Fixkosten pro DSM-Option

\(C_{\text{om } i} \): Instandhaltungskosten (operation and maintenance)

\(C_{\text{comm } i} \): Kosten für commodities wie Strom und Kommunikation

\(P_{\text{tech } i} \): technisches Potential

9.2 Exemplarisches Kostenschätzung IKT

Die Autoren haben für verschiedene, typische Fälle den Erschließungsaufwand für die IKT abgeschätzt. Das folgende Diagramm zeigt verschiedene Kundenkategorien und Investitionskosten auf Basis von Kostenschätzungen\(^\text{87}\).
Abbildung 33: Erschliessungsaufwand (total)88

Es ist zu beachten, dass der Erschliessungsaufwand insbesondere bei Industrieanlagen sehr schwierig abzuschätzen ist, da die Erweiterung und Umprogrammierung einer bestehenden SPS-Anlage je nach Zustand und Komplexität stark variiert. Bei Haushalten kann die Erschliessung unter Umständen deutlich günstiger sein, was auch das Vorhandensein z. B. von Rundsteueranlagen bzw. die bereits heute praktizierte Bewirtschaftung von Flexibilitäten zeigt. Letztlich ausschlaggebend ist, wie sich die Kostenfunktion der jeweiligen Technologie zur Erschliessung des DSM-Potentials darstellt. Skaleneffekte, Lerneffekte oder neu Technologien können zu Kostensenkungen beitragen.

88 In den Kästchen sind die jeweiligen Beträge über die gesamte Lebensdauer genannt. Im Anhang finden sich die genauen Prämissen für die Berechnung der genannten Fälle.
9.3 Einfluss von Smart Metering auf den Erschließungsaufwand

Die EVU sind verpflichtet, bis Ende 2027 80% ihrer Messeinrichtungen durch intelligente Messsysteme zu ersetzen. Diese intelligenten Messsysteme sind per Verordnung mit einer Schnittstelle zum VNB und einer weiteren zur Haustechnik ausgestattet, könnten aber auch mit zusätzlichen Kommunikationschnittstellen ausgestattet werden. Einerseits ist die Kommunikation mit einem DSM System, beispielsweise via Energiedatensystem möglich, andererseits kann via eine zu definierende Schnittstelle des Smart Meter das Last Management System verbunden werden. So muss für die Steuerung der Komponenten des DSM zwischen Energiedatenmanagements-System (EDM) des EVU und dem Smart Meter keine separate Erschließung erfolgen, was ein Beitrag zur Steigerung des wirtschaftlichen Potentials sein kann.

Der prinzipielle schematische Aufbau der Steuerungs-Infrastruktur ist im folgenden Bild ersichtlich.

Abbildung 34: Steuerungs-Infrastruktur

90 Vgl.: Stromversorgungsverordnung SR734.71, Art.31e Abs.1
Zugleich muss für die Nutzung von DSM aber eine hoch-performante Infrastruktur geschaffen werden. Für die Auslesung der Zähler zu Abrechnungszwecken würde es völlig ausreichen, die Smart Meter z. B. einmal jährlich auszulesen, wenngleich der Standard in der Schweiz eher kürzere Ablesezyklen sind. Die Nutzung von DSM für die genannten Anwendungszwecke bedingt aber, dass die Flexibilitäten sehr zuverlässig abgerufen werden können. Sofern beim Rollout und bei der Erstellung der entsprechenden Infrastruktur hier nicht bereits angemessen vorgegangen wird, sind Flexibilitäten unter Umständen nur in sehr eingeschränktem Masse nutzbar.
10 Internationaler Vergleich

10.1 Deutschland

Es wurden für Deutschland verschiedene Studien zur Potentialerhebung im Bereich Demand Side Management durchgeführt und sind öffentlich zugänglich. Deutschland hat einen grösseren und anders zusammengesetzten Industriesektor als die Schweiz, der ein grösseres theoretisches Potential aufweist. In den dortigen Studien wurde überwiegend auf die energieintensive Industrie abgezielt, andere Sektoren wurden nur vereinzelt betrachtet.

Für ausgewählte Industriezweige in Deutschland wurde insbesondere auch ein soziotechnisches Potential ausgewiesen, welches abhängig von Richtung und Dauer deutlich unter dem theoretischen Potential liegt. Für diese Industriezweige können daher Plausibilitätsüberprüfungen für das soziotechnische Potential mit Deutschland erfolgen.

91 Allerdings ist zum Beispiel ein Vergleich der Nutzung von Flexibilitäten im Raumwärmebereich zwischen den USA und der Schweiz sorgfältig zu prüfen.

92 Vgl.: Steurer, S. 64. Betrachtet wird eine Aktivierungsduer von höchstens 30 Minuten.

93 Vgl.: Dena, (2010), S. 421.
Abbildung 36: Soziotechnisches DSM-Potential Querschnittstechnologien

Das soziotechnische DSM-Potential bei den Haushalten ist in der folgenden Abbildung dargestellt. Das Potential in negativer Richtung liegt für eine Stunde resp. vier Stunden deutlich über dem in positiver Richtung. In beiden Richtungen ist das Potential in Deutschland bei den Speicherheizungen klar am höchsten. Speicherheizungen und Warmwasseraufbereitung eignen sich aufgrund der Speicherbarkeit besonders für DSM. Auch die DENA-Netzflex II – Studie kommt zu ähnlichen Ergebnissen.97

96 Vgl.: Steurer, S. 66f
97 Vgl.: Dena Netzflex II, S. 413
Trotz dieser viel versprechenden Perspektiven ist Demand Side Management auch bei den für DSM aussichtsreichen energieintensiven Branchen in Deutschland zwar oft im Grundsatz bekannt, wird aber dennoch nicht oft praktiziert. Hier spielen individuäökonomische Gründe oft eine Rolle. Ebenso wird das Potential in den Haushalten heute nicht genutzt.

Vor allem bei Industrie und Gewerbe, wo grössere Einzellasten vorhanden sind und professionelle Mess- und Steuerungstechnik zur Verfügung steht, wird versucht, das Potential zu erschliessen. Die deutsche Energie-Agentur (dena) führt derzeit zu diesem Zweck verschieden Pilotprojekte durch, um die nötigen Rahmenbedingungen zu schaffen und weiterzuentwickeln. Erste Befragungen im Rahmen eines Pilotprojekts in Bayern haben ergeben, dass bis dato nur ein Anteil von weniger als 4% der Unternehmen die flexiblen Lasten am Regelenergiemarkt vermarktet oder bilaterale Vereinbarungen mit dem Netzbetreiber trifft. Andererseits nehmen bereits die Hälfte der befragten Unternehmen Massnahmen vor, um die betriebliche Spitzenlast zu reduzieren. Schliesslich gaben ein Viertel der Befragten an, bisher noch keine Erfahrungen mit Lastmanagement gemacht zu haben.

98 Vgl.: Steurer, S. 67
10.2 USA

10.3 Grossbritannien

Grossbritannien war das erste Land in Europa, das nachfrageseitige Ausschreibungen und andere Programme im Bereich Demand Side Management durchführte\(^{103}\).

\(^{103}\) Vgl.: Baitch et al., S. 2

Die Nutzung nachfrageseitiger Flexibilität ist für Grossbritannien insbesondere wegen der begrenzten Interkonnektoren sinnvoll, und die Notwendigkeit wird sich mit dem dortigen Zubau von Windkraft noch weiter verstärken.108

104 Vgl.: Langrock et al., S. 47 ff.
105 Vgl.: Langrock et al., S. 49
108 Vgl.: ACER (2014), S. 10
10.4 Niederlande

10.5 Italien

109 Vgl.: Langrock et al., S. 57
112 Vgl.: Langrock et al., S. 51
11 Identifikation von Hemmnissen und Lösungsvorschlägen

In diesem Abschnitt wird wiederholt der Begriff «Flexibilität» genutzt, statt von DSM zu sprechen. Es ist aus Sicht der Autoren sinnvoll, an verschiedenen Stellen den Charakter der Steuerbarkeit der Verbraucher durch den Terminus «Flexibilität» besser hervor zu heben, um eine Abgrenzung zum Begriff DSM zu ermöglichen, welche eher eine Systemsichtweise beinhaltet.

11.1 Soziotechnische Hemmnisse

Zu den soziotechnischen Hemmnissen zählen vorrangig Probleme mit dem Wissens- und Informationsstand der Beteiligten bezüglich DSM. Weiterhin gibt es verschiedene Branchenregularien, welche die Förderung von DSM eher erschweren.

11.1.1 Wissens- und Informationsstand

Zentrales soziotechnisches Hemmnis für DSM ist der geringe Informationsstand der potentiellen Anbieter von Flexibilität für DSM-Zwecke, beispielsweise bei den individuellen Haushalten und Industrieunternehmen, aber auch bei solchen Unternehmen, welche die Flexibilitäten bewirtschaften würden. Der Mangel an Informationen trägt wesentlich dazu bei, dass sich die entsprechenden Märkte nicht entwickeln können. Dieses Hemmnis behindert nicht nur die Quantifizierung des DSM-Potentials in dieser Studie, sondern verhindert zusätzlich, dass sich DSM, entsprechende Geschäftsmodelle etc. in der Schweiz verbreiten können. Öffentliche Statistiken, Datenquellen, Studien etc. sind heute in der Schweiz nicht in der Lage, diesen Informationsbedarf bei den genannten Akteuren zu decken. Damit können politische Entscheide in diesem Zusammenhang ebenso wenig unterstützt werden wie z. B. betriebswirtschaftliche Überlegungen.

Dieses Problem ist nicht nur in der Schweiz bekannt. Im Rahmen des «Pilotprojekts Demand Side Management Bayern» wurden Informationsmängel als kritisch identifiziert und in einer DSM-Roadmap Verbesserungen der Informationslage angesprochen\(^\text{114}\). Aktuell werden zum Beispiel webbasiert Toolboxen bereitgestellt, zudem gibt es Expertenblogs, Berichte zu Best practises etc.

Die Endverbraucher sollten zur Förderung von DSM umfassend über die Bedingungen für deren Bewirtschaftung und deren Bedeutung für das zukünftige Energiesystem informiert werden. Ohne Transparenz über die Nutzungsbedingungen werden die Endverbraucher kaum bereit sein, ihre Flexibilität zur Verfügung zu stellen. Eine breite Aufklärung würde dem entgegenwirken.

Zugleich ist auch bei den Versorgungsunternehmen der Informationsstand gering. Bislang hatten die Verteilnetzbetreiber wenig Veranlassung die Flexibilitätpotentiale in ihrem Netz systematisch zu erheben und Produkte bis hin zu geeigneten Tarifstrukturen zu entwickeln. Zum einen sind die Netze vielfach noch gut ausgebaut, zum anderen sind nicht immer ökonomischen Vorteile zu erkennen, wenn man Flexibilität bewirtschaftet.

Der stärkste Anreiz für die Beseitigung der Wissens- und Informationsmängel ist zu erwarten, wenn z. B. durch höhere Spot- und Regelenergiekosten die Nutzung der Flexibilität attraktiver und rentabler wird. In dem Fall werden die Marktteilnehmer eigene Anstrengungen unternehmen, um die Informationsdefizite zu beseitigen. Weitere Studien und Pilotprojekte in Zusammenarbeit mit den Wirtschaftsverbänden könnten die Akzeptanz zusätzlich erhöhen.

11.1.2 Energiewirtschaftliche Regularen

\(^{114}\) Für weitere Informationen vgl.: www.dsm-bayern.de

\(^{115}\) Voraussetzung hierfür ist natürlich die Identifizierbarkeit.
Falls im Extremfall die Systemstabilität gefährdet ist, muss der Verteilnetzbetreiber vorrangig auf die Flexibilität zurückgreifen können. Dies ist in der Revision StromVG vorgesehen, hierzu siehe Art. 17bis Abs. 5, Vorentwurf vom 17. Oktober 2018 für die Revision des StromVG. Dazu sind Kriterien festzulegen, aber auch Haftungs- und Schadenersatzfragen zu klären.

11.2 Ökonomische Hindernisse

11.3 Technische Hemmnisse

Es gibt eine Reihe technischer Hemmnisse, welche die künftige Nutzung von DSM erschweren.

Eher kurzfristig relevant und zu lösen ist aus technischer Sicht die Frage, welche Infrastruktur mit welchen Leistungsmerkmalen künftig beim Smart Meter Rollout installiert werden soll, um DSM im Haushaltsbereich stärkere Verbreitung zu verschaffen. Die Nutzung von Flexibilitäten im Rahmen von DSM hat nur dann Sinn, wenn auch die technische Infrastruktur geeignet ist, die jeweilige Leistung zu jedem Zeitpunkt sicher und zuverlässig abrufen zu können. Smart Meter sind zwar keineswegs Voraussetzung für die Nutzung von flexiblen Verbrauchern, doch kann beim Rollout die Steuerung der Flexibilitäten für DSM-Zwecke gleich mit angelegt werden, was Effizienzvorteile hebt. Wie oben geschildert, muss zum Beispiel eine leistungsfähige Kommunikationsinfrastruktur geschaffen werden, um die flexible Leistung im Bedarfsfall auch zeitnahe und zuverlässig abrufen zu können. Hilfreich wäre es, wenn zur Vermeidung von Fehlinvestitionen beim Smart-Meter-Rollout insbesondere hinsichtlich der Kommunikationstechnologie klare Anforderungen an die Leistungsfähigkeit der Systeme definiert würden, um einen Beitrag zu DSM zu leisten. Die Definitionen selbst könnten dann aber subsidiär erfolgen.

Grundsätzlich förderlich wäre es aus technischer Sicht, wenn fehlende Normierungen oder fehlende Kommunikationsstandards beseitigt würden, um z. B. Datenaustausch und Interoperabilität unterschiedlicher Systeme zu verbessern. Dieses hätte Auswirkungen auf die Wirtschaftlichkeit von DSM. Die Er-
schliessung von DSM-Potentialen ist heute oft nur mit grossem, technisch-finanziellen Aufwand mög-
lich. Standardisierungen können die Interoperabilität der verschiedenen, technischen Komponenten för-
dern, sie könnten zugleich aber auch die Wirtschaftlichkeit verbessern. Es wird hier angeregt, in Dis-

Schliesslich ist zu überlegen, ob die Nutzung des jeweiligen Verbrauchers für DSM-Zwecke im techni-

11.4 Rechtliche Hindernisse

Es gibt verschiedene rechtliche Hemmnisse für die Nutzung von DSM, die zum Beispiel aus StromVG und StromVV herrühren.

11.4.1 Beschränkte Wahlfreiheit bei Tarifen

Aktuell wirken die StromVG und die StromVV hinderlich, da sie die Wahlfreiheit bei Tarifen beeinflussen. Nach Art. 6 Abs. 3 StromVG legen die Betreiber der Verteilnetze in ihren Netzgebieten für feste End-

Es müssten also Wahltarife einfacher und mit weniger Restriktionen angeboten werden können, für welche die Endverbraucher sich dann aktiv entscheiden können. Der Netzbetreiber könnte dann z. B. einem Teil der Kunden das Netz (gegen höhere Netznutzungsentgelte) uneingeschränkt bzw. unbedingt zur Verfügung stellen, einem anderen Teil der Kunden jedoch nur noch bedingt. Anders ausgedrückt, könnte der Verteilnetzbetreiber die Netznutzung vertraglich einschränken. Die Netze müssen nicht mehr so dimensioniert werden, dass jederzeit uneingeschränkte Bedarfsdeckung möglich ist. Der Netzbetrei-
ber könnte für seine technischen Planungen, seine langfristigen Investitionen etc. verlässliche Grundla-
gen nutzen, die eine Minderung der Inanspruchnahme der Netze bewirken.

Es empfiehlt sich, bereits auf Gesetzesstufe explizit festzulegen, dass Verteilnetzbetreiber spezielle Elektrizitätstarife für alle Endverbraucher (zusätzlich) anbieten können, welche ihnen ihre Verbraucher zur Steuerung zur Verfügung stellen. Eine solche Regelung wird mit der Revision StromVG beabsichtigt und ist nicht völlig neu. Endverbraucher, welche ihre Flexibilität dem Netzbetreiber ganz oder teilweise
zur Verfügung stellen, können schon heute einen besseren Netznutzungstarif erhalten (z. B. Wärmepumpentarif). Es gibt keinen weiteren Grund, das Angebot an Wahltarifen darüber hinaus zu beschränken. Die Frage, in welchem Umfang Flexibilitästarife angeboten werden, könnte auf Verordnungsebene subsidiär geregelt werden. Aufgrund des Missbrauchspotentials sollte eine solche Regelung aber auf jeden Fall überprüft werden, damit der Gesetzgeber die Möglichkeit hat, diese geeignet über konkretere Regelungen in der Verordnung anzupassen.

Die Ausgestaltung der Flexibilitätsregulierung sollte möglichst marktorientiert erfolgen. Bei Bedarf könnten die Verteilnetzbetreibenden EVUs die Flexibilität für Netzzwecke zu definierten (und ggf. als angemessen beurteilten Konditionen) von Endkunden oder von Aggregatoren aufkaufen. Sofern die Tarife dann nicht zu komplex gestaltet sind, könnten auch Dritte Anbieter Produkte gestalten, die Flexibilität im Netz und am Energiemarkt bewirtschaften.

Mit erweiterten Wahlmöglichkeit können Endverbraucher an günstigeren Strompreisen partizipieren und bei hohen Strompreisen mit Lastverlagerung reagieren. Smart Meter wären sicher hilfreich, sofern die Daten zum Beispiel hinsichtlich Granularität und Aktualität angemessen bereitgestellt werden. Durch eine Missbrauchsaufsicht seitens ElCom auch für Wahltarife kann der Schutz der Endverbraucher gewährleistet werden.

11.4.2 Angemessenheit der Tarife

11.4.3 Berechnungsvorschriften für Tarife

Art. 18 Abs. 3 StromVV regelt die Bemessungsgrundlage für den Netznutzungstarif und sieht bei Spannungsebenen unter 1 kV für Endverbraucher in ganzjährig genutzten Liegenschaften mit einem Jahresverbrauch bis zu 50 MWh zu mindestens 70 Prozent ein nichtdegressiver Arbeitstarif (Rp./kWh) vor. Ohne eine zusätzliche Flexibilitätsregulierung und die Möglichkeit dynamischer Netztarife lässt diese Bestimmung zu wenig betriebswirtschaftlichen Spielraum zur effektiven Nutzung von DSM.

11.4.4 Marktdesign

11.4.5 Versorgungssicherheit

Politisch vorteilhaft wäre es unter Umständen, auch den Beitrag von DSM zur Versorgungssicherheit verdeutlichen, in dem Rechtsnormen angepasst würden. Bei Gefährdung der Versorgungssicherheit kann der Bundesrat Massnahmen ergreifen (Art. 9 StromVG). Aufgrund der zunehmenden Bedeutung
der Nutzung flexibler Verbraucher für die Versorgungssicherheit, wäre es zweckmässig diese explizit auch bei den Massnahmen aufzuführen, bspw. könnte Art. 9 Abs. 1 Bst. a StromVG mit Inhalten zum Thema «Steigerung der Effizienz der Elektrizitätsverwendung und Nutzung der Flexibilitäten im Verteilnetz» ergänzt werden.

Fraglich ist aber, ob die Verfolgung der jeweiligen Ziele durch Verteilnetzbetreiber, Aggregatoren etc. am Ende zu einem volkswirtschaftlich optimalen Ergebnis führt, und ob es zum Beispiel Zielkonflikte zwischen den Beteiligten gibt. Um diesem Defizit zu begegnen, wäre zu überlegen, dass sich die Swissgrid und die Verteilnetzbetreiber über die Nutzung von Flexibilitäten in den Verteilnetzen abstimmen müssen. Hierbei sind mehrere Ausgestaltungsmöglichkeiten denkbar.

11.4.6 Nutzungsrechte für Flexibilität

11.4.7 Weitere Bestimmungen

11.5 Zusammenfassung

Nachfolgend werden die oben genannten, wesentlichen Hemmnisse für die Nutzung von Flexibilitäten mitsamt den Möglichkeiten zur Beseitigung aufgeführt:

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Hemmnis</th>
<th>Wirkung</th>
<th>Beseitigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Hemmnisse</td>
<td>Fehlende Kommunikationsstandards und fehlende Normierungen</td>
<td>Zu hohe Kosten z. B. für technische Anbindung von Flexibilitäten</td>
<td>Normierung und Standardisierung subsidiär fördern</td>
</tr>
<tr>
<td></td>
<td>Unsichere, technische Anforderungen an Flexibilitätsschliessung</td>
<td>Drohende Sunk Costs bei EVUs, z. B. für Kommunikation</td>
<td>Klare Vorgaben an Anforderungen z. B. durch Regulator; allenfalls subsidiäre Definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nutzung anderer Technologien in Verteilnetzen</td>
<td>Informationskampagnen, regulatorische Vorgaben, verbesserte Wirtschaftlichkeit der Flexibilitätsbewirtschaftung</td>
</tr>
<tr>
<td>Soziotechnische Hemmnisse</td>
<td>Unkenntnis über technische Vorteile, Rahmenbedingungen etc. bei DSM bei Verbrauchern, EVUs und anderen Aktieren</td>
<td>Fehlende Datengrundlage für Marktteilnehmer, z. B. um Geschäftsmodelle zu entwickeln</td>
<td>Verbesserung der Datengrundlage seitens Bund, um die Grundle- gen zu schaffen für erhöhte Akzeptanz, neue Geschäftsmodelle etc.</td>
</tr>
<tr>
<td></td>
<td>Wissens- und Informationsdefizite</td>
<td>Transaktionskosten für Marktteilnehmer zu hoch</td>
<td>Informationskampagnen, verbesserte Wirtschaftlichkeit der Flexibilitätsbewirtschaftung</td>
</tr>
<tr>
<td>Ökonomische Hemmnisse</td>
<td>Sicherstellung des Informationstauschens z. B. zwischen Verteilnetzbetreiber, Energielieferant und Regelenergiepooler</td>
<td>Das durch die Flexibilitätsbewirtschaftung ermöglichte Optimum wird aufgrund fehlender Daten verfehlt Flexibilitätsbewirtschaftung unterbleibt aus betriebswirtschaftlichem Kalkül</td>
<td>Verbesserung der Informationspflicht Abgeltung etwaiger Kosten Dritter, die z. B. durch Regelenergiepooling entstehen</td>
</tr>
<tr>
<td></td>
<td>Mangelnde wirtschaftliche Anreize und geringe Preiselasticität der Stromnachfrage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rechtliche Hemmnisse</td>
<td>Tarife zu wenig dynamisch, es bestehen keine Anreize die Flexibilität zu nutzen</td>
<td>Dem Verbraucher steht jederzeit die gewünschte Menge an Elektrizität mit der erforderlichen Qualität und</td>
<td>Bedingte und unbe- dingte Netztarife, so dass nur noch ein kleinerer, aber relevanter</td>
</tr>
</tbody>
</table>

Tabelle 15: Zusammenfassung Hemmnisse
| Wenig Flexibilität bei Festlegung der Verbrauchergruppen | Potential kann nur ungenügend genutzt werden | Verteilnetzbetreiber sollen spezielle Elektrizitätstarife für alle Endverbraucher zusätzlich anbieten können, welche ihnen ihre Flexibilitäten zur Steuerung zur Verfügung stellen |

| Aktuelle Monopolsituation begrenzt Vermarktung der Flexibilität. | Kein starker Wettbewerb um Flexibilität für DSM-Produkte | Vollständige Marktöffnung |

| Regelung zum Umgang von Flexibilität innerhalb von ZEV fehlt. | Fehlende Rechtssicherheit, offene Fragen der Mitbestimmung der ZEV-Teilnehmer | Regelung zum Umgang von Flexibilität innerhalb von ZEV treffen |
12 Schlussfolgerungen

Heute steht aber der verbreiteten Nutzung von DSM noch entgegen, dass die Erlöse für die Akteure oft noch zu niedrig ausfallen. Es rentiert sich nicht, Stromverbraucher für DSM zur Verfügung zu stellen, da zu geringe Erlöse erzielt werden. Solange diese Situation anhält, werden die Akteure, insbesondere die Industrieunternehmen, kaum Anstrengungen unternehmen, sich im Bereich DSM zu engagieren.

Regulatorische Hemmnisse liegen unter Umständen im Tarifwesen, aber auch hinsichtlich Marktdesign, Nutzungsrechten für Flexibilität etc. vor. Um diese Hemmnisse zu überwinden kann z. B. eine Anpassung des Tarifwesens erfolgen.

Es wird aber nicht ausreichen, einzelne Hemmnisse zu beseitigen. Vielmehr ist es nötig, möglichst viele der Kategorien der Hemmnisse zu beachten, wenn DSM gefördert werden soll.
Literaturverzeichnis

Bundesrat (ohne Jahr): “Stromverbrauch, Energieeffizienz und Fördermassnahmen im Bereich der Rechenzentren”. Bern

Energiewirtschaftliches Institut an der Universität zu Köln e.V. EWI (Hrsg.) (2012): “Untersuchungen zu einem zukunftsfähigen Strommarktdesign: im Auftrag des Bundeswirtschaftsministeriums”. Köln

Imboden et al. (2016): „Teilnahme industrieller Regelleistungs-Anbieter am Schweizer SDL-Markt - Technische und wirtschaftliche Opportunitäten, Bewertungsmethodik“. Horw

Swissgrid (Hrsg.) (2018): „Balancing Roadmap Schweiz“. Aarau

Anhang 1: Fragebogen EVU-Onlineumfrage

Allgemeine Beschreibung des Unternehmens

Strom :
 – Netzabsatz Strom (GWh/a):
 – Von Dritten gelieferte Strommengen (GWh/a):
 – Einspeisung im Verteilnetz (GWh/a):
 – Netzhöchstlast Strom (MW):

Weitere Sparten des Unternehmens:
Gas: ☐ Wasser: ☐ Wärme: ☐ Telekommunikation: ☐
Sonstige:

Haben Sie sich bereits mit Demand Side Management oder mit der Bewirtschaftung von Flexibilitäten befasst?
Ja: ☐ Nein: ☐

Informationen zum Stromabsatz

<table>
<thead>
<tr>
<th>Segment</th>
<th>Anzahl</th>
<th>davon: Haus-</th>
<th>Absatz (GWh)</th>
<th>davon: Haushalte (Absatz in GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 100'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1'000'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1'000'000 kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technische Aspekte und Tarife

Rundsteueranlagen
 – Anzahl Kunden mit Rundsteueranlage:
 – Davon Anzahl Kunden mit sperrbarem Verbrauch:
 – Verbrauch der Kunden mit Rundsteueranlage (GWh):
 – Davon Kunden mit sperrbarem Verbrauch (GWh):

Flexible Tarife
 – Verfügen Sie über HT/NT-Tarife hinaus über „flexible Tarife“, d.h. über Tarife für Kunden, deren Lastverhalten Sie beeinflussen können?
 Ja: ☐ Nein: ☐

Flexibilitätspotential

Bewirtschaftung der Flexibilitäten durch Ihr EVU heute
 – Werden Flexibilitäten in Ihrem Netz heute von Ihnen bewirtschaftet?
 Ja: ☐ Nein: ☐
Planen Sie die Flexibilitäten in Ihrem Netz in Zukunft zu bewirtschaften?
Ja: ☐ Nein: ☐

Wenn Sie die Flexibilitäten in Ihrem Netz heute nicht bewirtschaften, überspringen Sie bitte die nachfolgenden Fragen 4.3.1 bis 4.3.5.

Bewirtschaften Sie Flexibilitäten bei ihren grossen Endverbrauchern, d.h. bei Endverbrauchern mit mehr als 100'000 kWh-Stromverbrauch pro Jahr?
Ja: ☐ Nein: ☐
 Wenn Ja, wieviel GWh pro Jahr?
 Art der flexiblen Anlagen:

Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Bewirtschaften Sie Flexibilitäten bei ihren Gewerbebetrieben und Dienstleistungsunternehmen mit weniger als 100'000 kWh-Stromverbrauch?
Ja: ☐ Nein: ☐
 Wenn Ja, wieviel GWh pro Jahr?
 Art der flexiblen Anlagen:

Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Bewirtschaften Sie Flexibilitäten bei Haushalten?
Ja: ☐ Nein: ☐
 Wenn Ja, wieviel GWh pro Jahr?
 Art der flexiblen Anlagen:

Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Bewirtschaften Sie Flexibilitäten im Verkehrssektor (Elektromobilität)?
Ja: ☐ Nein: ☐
 Wenn Ja, wieviel GWh pro Jahr?
 Art der flexiblen Anlagen:

Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Bewirtschaften Sie Flexibilitäten im Bereich Wasserversorgung?
Ja: ☐ Nein: ☐
 Wenn Ja, wieviel GWh pro Jahr?
 Art der flexiblen Anlagen:

Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Schätzungen zu den Flexibilitäts-Potentialen in Ihrem Netzgebiet

Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet bei den grossen Endverbrauchern, d.h. bei Endverbrauchern mit mehr als 100'000 kWh-Stromverbrauch pro Jahr?
Wieviel GWh pro Jahr?
Art der flexiblen Anlagen:
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:
Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet bei Gewerbebetrieben und Dienstleistungsunternehmen mit weniger als 100'000 kWh-Stromverbrauch?
Wieviel GWh pro Jahr?
Art der flexiblen Anlagen:
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:
Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet bei Haushalten?
Wieviel GWh pro Jahr?
Art der flexiblen Anlagen:
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:
Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet für stationäre Batterien bei Endverbrauchern?
Wieviel GWh pro Jahr?
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:
Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet im Verkehrssektor (Elektromobilität)?
Wieviel GWh pro Jahr?
Art der flexiblen Anlagen:
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:
Wie schätzen Sie das Flexibilitätspotential in Ihrem Netzgebiet bei der Wasserversorgung bzw. Abwasserentsorgung bzw. Abwasserbehandlung?
Wieviel GWh pro Jahr?
Art der flexiblen Anlagen:
Beschreibung von Art und Umfang der Flexibilitätsbewirtschaftung, z. B. Dauer Verschiebung, Häufigkeit, Saisonalität:

Bewirtschaftung der Flexibilitäten durch Dritte heute

Werden Flexibilitäten in Ihrem Netz von Dritten bewirtschaftet (bspw. durch Regelenergiepooling)?
Ja: ☐ Nein: ☐

Art der von Ihnen oder von Dritten bewirtschafteten Flexibilitäten (z.B. Wärmepumpen):

Flexibilitäten bei Haushalten, inkl. Kleingewerbe (ggf. schätzen)
Heutige Anzahl Haushalte mit Elektroboiler:
Wenn keine Daten vorhanden, bitte schätzen:

Heutige Anzahl Haushalte mit Wärmepumpenboiler:
Wenn keine Daten vorhanden, bitte schätzen:

Heutige Anzahl Haushalte mit elektrischer Widerstandsheizung:
Wenn keine Daten vorhanden, bitte schätzen:

Heutige Anzahl Haushalte mit Wärmepumpe:
Wenn keine Daten vorhanden, bitte schätzen:

Heutige Anzahl Haushalte mit WKK:
Wenn keine Daten vorhanden, bitte schätzen:

Sonstige Flexibilitäten in Haushalten (Beschreibung und Anzahl):

Wie schätzen Sie die zukünftige Situation ein:

Werden die steuerbaren Flexibilitäten bei Haushalten eher zunehmen ☐ gleich bleiben ☐ abnehmen ☐

Hemmnisse für die Nutzung vorhandener oder weiterer Flexibilitäten bei Haushalten und Verkehr:

Heutige Anzahl öffentlicher Ladesäulen:
Heutige Anzahl privater Ladesäulen:
Heutige Anzahl Elektromobile im Netz (Autos):
Sonstige typische Flexibilitäten im Verkehrsbereich (Beschreibung und Anzahl):
Notstromaggregate:
Anzahl Notstromgeneratoren im Netz:
Installierte Leistung Notstromgeneratoren im Netz:
Anhang 2: Auswertung EVU-Umfrage

Struktur der Antworten

Zu Erhebung und Verifizierung von Daten wurde eine Umfrage bei Schweizer Energieversorgern (EVU) durchgeführt. Insgesamt wurden 26 EVU angeschrieben, die einerseits verschiedenen Grössenklassen (gemessen am Netzabsatz), andererseits verschiedenen Grossregionen angehören. Das Bundesamt für Energie hat die Unternehmen per Brief vorinformiert, die Erhebung erfolgte durch B E T mittels eines ausführlichen Online-Fragebogens. In der zweiten Hälfte des Fragebogens wurde gefragt, ob die EVU in gewissen Verbraucherkategorien Flexibilitäten aktiv bewirtschaften. Fällt die Antwort negativ auf, so verkürzt sich der Fragebogen entsprechend und es fielen dann nicht für jede Frage genauso viele Antworten an wie EVU teilgenommen haben.

Insgesamt haben 6 Unternehmen den Fragenbogen komplett ausgefüllt, was einer Rücklaufquote von 23% entspricht. Ein EVU hat die Umfrage begonnen, aber nicht beendet. Von den Grossregionen sind Zürich und die Genferseeregion nicht vertreten.

Im Fragebogen konnten bei gewissen Frage freie Antworten angegeben werden. Dies werden in diesem Abschnitt im Original wiedergegeben und sind darum unbehandelt.

<table>
<thead>
<tr>
<th>Grossregion</th>
<th>Grösse</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVU 1</td>
<td>Espace Mittelland gross</td>
</tr>
<tr>
<td>EVU 2</td>
<td>Tessin gross</td>
</tr>
<tr>
<td>EVU 3</td>
<td>Ostschweiz klein</td>
</tr>
<tr>
<td>EVU 4</td>
<td>Zentralschweiz gross</td>
</tr>
<tr>
<td>EVU 5</td>
<td>Nordwestschweiz mittel</td>
</tr>
<tr>
<td>EVU 6</td>
<td>Nordwestschweiz klein</td>
</tr>
</tbody>
</table>

Von den sechs befragten Unternehmen haben sich fünf bereits mit dem Thema Demand Side Management befasst und bewirtschaften Flexibilitäten in ihrem Netz. Vier der sechs Unternehmen bieten heute abgesehen von HT-/NT bereits flexible Tarife an, um deren Lastverhalten beeinflussen zu können.

Auswertung heutige Flexibilität pro Kategorie

Flexibilität von Grossverbrauchern (> 100'000 kWh)
Zwei der Teilnehmer bewirtschaften Flexibilität von Grossverbrauchern in der Höhe von 0.5 resp. 2 GWh/a, wobei einer „industrielle Anwendungen“ als Art der Anlagen genannt hat. Ein Unternehmen gab an, dass Flexibilität vor allem am Markt für Sekundär- und Tertiärregelleistung angeboten wird, es dabei zu wenigen Abrufen von kurzer Dauer (5-60 min) komme. Das andere erläuterte, dass tägliche Ausschaltungen während den Spitzenlastzeiten im Netz vorkämen, damit eine Verteilung der Einschaltzeiten für eine ausgeglichene Lastverteilung im Netz sorge.
Flexibilität von Gewerbebetrieben und Dienstleistungsunternehmen (<100’000 kWh)
Im Monopolbereich ist es einfacher, Flexibilität zu bewirtschaften. Fünf EVU sind in diesem Bereich aktiv und bewirtschaften von 2 bis 80 GWh/a pro Jahr (geschätzte Werte). Dabei handelt es sich um Anwendungen wie Boilerheizungen, Wärmepumpen, Elektrische Heizungen, Kältetechniken und Grossbäckereien. Folgende Arten wurden beschrieben:
 - Boilersteuerung einmal pro Nacht, Wärmepumpe zweimal pro Tag für je 2h
 - Minuten Blöcke mehrmals täglich, Stunden Blöcke täglich
 - Tägliche Ausschaltungen während den Spitzenlastzeiten im Netz resp. Verteilung der Einschalzenten für eine ausgeglichene Lastverteilung im Netz
 - Tägliche Freigabe/Sperrung zu bestimmten Zeiten mit Entschädigung über günstigeren Tarif
 - Betrieb einer automatischen Laststeuerung, momentan nur zur Spitzenlastregulierung

Flexibilitäten bei Haushalten
Auch bei der Kategorie „Haushalt“ bewirtschaften fünf EVU die Flexibilitäten. Entsprechend den Größenunterschieden der jeweiligen EVU werden von 4 bis 500 GWh/a (geschätzte Werte) bewirtschaftet. Analog der obigen Kategorie werden ebenfalls Heizungs- und Warmwassertechnologien gesteuert (Wärmepumpen, Boiler, elektrische Heizungen, Speicherheizungen etc.). Art und Umfang wurde genau wie Gewerbebetrieben und Dienstleistungsunternehmen (<100‘000 kWh) beschrieben. Dies bedeutet, dass zwischen diesen beiden Kategorien bei der Flexibilitätsbewirtschaftung keinen Unterschied gemacht wird.

Flexibilität von stationären Batterien
Von den befragten Unternehmen ist in dieser Kategorie keines aktiv.

Flexibilität im Verkehrssektor (Elektromobilität)
Zwei EVU steuern in dieser Kategorie Ladestationen. Insgesamt sind es 30 resp. 100 Kunden. Es werden dabei aber nur geringen Mengen (0.01 resp. 0.005 GWh) verschoben. Einerseits besteht die Möglichkeit zur automatischen oder manuellen Regulierung sowie ein dazu redundantes Lastmanagement. Anderseits wurde eine Notfallsteuerung „zugunsten der Versorgungssicherheit“ eingeplant.

Wasserversorgung bzw. Abwasserentsorgung
Ein EVU bewirtschaftet ein Trinkwasserkraftwerk und ein Abwasserkraftwerk. Näheres wurde leider aber nicht beschrieben.

Auswertung zukünftiges Flexibilitätspotential

<table>
<thead>
<tr>
<th>EVU</th>
<th>Heutiges Potential GWh/a</th>
<th>Zukünftiges Potential GWh/a</th>
<th>Zukünftige Zahl der Verbraucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Flexibilität von Gewerbebetrieben und Dienstleistungsunternehmen (<100'000 kWh)

| EVU 6 | 1 | 3 |

Flexibilität bei Haushalten

Hemmnisse bei der Nutzung wurden dementsprechend einigen angegeben:

- Restriktive Vorschriften, begrenzte Entschädigungen, übermäßige Bürokratie
- Das grösste Problem besteht darin, dass die Eigentümer seit der Revision des Energiegesetzes neu schriftlich einwilligen müssen, dass Flexibilitäten in ihren Haushalten gesteuert oder gemanagt werden dürfen. Die dazu nötigen Aufwendungen mit sehr vielen vorgängig nötigen Abklärungen und Verträgen zwischen Eigentümern und dem VNB sowie die Gefahr einer sehr grossen Unzufriedenheit bei den Eigentümern, sollte es zu einem Systemausfall kommen verhindern, erschweren eine Zunahme bei der zukünftigen Steuerung von Flexibilitäten. Lösungen dafür bilden aus meiner Sicht eine flexible Tarifstruktur sowie die Digitalisierung mit dem IoT.
- Komplexe Administration, respektive gesetzliche Vorgaben mit "Opt-In" und Entschädigungsthematik
- Vermehrte Integration von Wärmepumpen und Warmwassererzeugung in eigenes EMS
- Weniger elektrische Lasten, da Widerstandsheizungen und Boiler durch effizientere Lösungen ersetzt werden
- Die finanziellen Anreize für eine Veränderung der bestehenden Installationen sind zu gering. Die Stromrechnung ist im Vergleich zu anderen Haushaltsbudgetpositionen tief. Die wenigsten

- Eine Nachrüstung von Sensoren und Steuerelementen lohnt sich finanziell in vielen Fällen nicht (hier bieten allenfalls Smartmeter, die diese Funktionalitäten schon aufweisen, Möglichkeiten).
- Bei Neuanlagen, wie insbesondere Ladesäulen- und Boxen für die E-Mobilität sieht dies hingegen anders aus, da hier ein Lastmanagement effektiv massive Mehrkosten (Netzanschlussausbau) verhindern können.

<table>
<thead>
<tr>
<th></th>
<th>Heutiges Potential GWh/a</th>
<th>Zukunftiges Potential GWh/a</th>
<th>Zukunftige Zahl der Verbraucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVU 1</td>
<td>50</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>EVU 2</td>
<td>200</td>
<td>200</td>
<td>30'000</td>
</tr>
<tr>
<td>EVU 3</td>
<td>4</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>EVU 4</td>
<td>40</td>
<td>40</td>
<td>25’000</td>
</tr>
<tr>
<td>EVU 5</td>
<td>-</td>
<td>10</td>
<td>2500</td>
</tr>
<tr>
<td>EVU 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Flexibilität bei stationären Batterien

<table>
<thead>
<tr>
<th></th>
<th>Zukünftiges Potential GWh/a</th>
<th>Zukünftige Zahl der Verbraucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVU 1</td>
<td>0.3</td>
<td>300</td>
</tr>
<tr>
<td>EVU 2</td>
<td>6.5</td>
<td>1’300</td>
</tr>
<tr>
<td>EVU 3</td>
<td>0.045</td>
<td>40</td>
</tr>
<tr>
<td>EVU 4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>EVU 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EVU 6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Während sich zwar aktuell noch kein EVU mit diesem Potential befasst hat, wird das Potential jedoch anerkannt. Das Potential wird wie folgt beschrieben:
- Verschiebungen innerhalb des Tages. Da es sich hauptsächlich um Solarbatterien handelt, bezieht sich Flexibilität vor allem auf den Zeitpunkt der Ausspeicherung.
- Minuten Blöcke mehrmals täglich; Stunden Blöcke täglich; vor allem im Sommer
Hier liegt das Potential vor allem bei den Haushalten mit Eigenverbrauchsanlagen und den dazugehörigen PV-Anlagen; Lastmanagement durch Eigenverbrauch.

Eigenverbrauchsoptimierung durch Prosumer. Dynamisch – Witterungsabhängig

Batterien werden sich erst durchsetzen, wenn sie wirtschaftlich betrieben werden können. Momentan ist dies nicht absehbar.

Grundsätzlich kommt es darauf an, für welchen Anwendungsfall die Batterie eingesetzt werden soll. Eine Batterie ist kein Verbraucher, sondern dient der Speicherung (Bezug und Abgabe) von elektrischer Energie. Sollten die Grenzkosten von elektrochemischen Batterien drastisch sinken und die Speicherung von Energie günstiger als bei Alternativen werden, resp. die Nachfrage nach gespeicherter Energie, Regelenergie, Lastspitzenmanagement etc. steigen, werden entsprechend Batteriekapazitäten aufgebaut.

Flexibilität im Verkehr (Elektromobilität)

Bei der Nutzung des Potentials werden einige Hemmnisse und Hindernisse genannt:

- Öffentliche Ladestationen sind nur bedingt als Flexibilitäten einsetzbar. Wenn der Nutzer an eine öffentliche Station fährt, will er sofort mit maximaler Leistung laden. Hier geht es um Schnelligkeit und Zeit. Im Heimbereich oder am Arbeitsplatz, oder überall dort, wo das Auto mehrere Stunden steht, kann das E-Auto als Flexibilität genutzt werden. Es muss aber sichergestellt werden, dass das Auto zu einer bestimmten Zeit (z. B. morgens um 7.00 Uhr) vollgeladen ist.
- Bidirektionales Laden ist heute noch nicht möglich, wird aber in Zukunft sicher möglich sein. Die Flexibilitäten können heute also nur durch ein gesteuertes Laden erreicht werden, aber nicht durch ein gesteuertes Entladen der Batterie.
- Bedenken der Nutzer, ob Auto am nächsten Tag wirklich geladen ist. Was ist, wenn man doch plötzlich spontan am Abend noch los muss, und das Auto nicht geladen ist? Nutzer möchte immer 100% flexibel bleiben und sich in seiner Mobilität nicht einschränken.
- Dauer der Ladung und Notwendigkeit schwer abzuschätzen
- Das Netz der Ladestationen und die Ladezeiten
- Nutzungseinschränkungen durch Kunden
- Der Kunde erwartet, dass er sein Fahrzeug dann laden kann, wenn er es will bzw. einsteckt.
- Marktdurchdringung noch zu klein
- Intelligente Gesamtsysteme sind erst im Entstehen und Standardisierung von Ladestationen noch nicht sichergestellt.
- Bidirektionales Laden/Entladen bei praktisch keinem heutigen EV vorgesehen. Somit können diese nicht wie stationäre Batterien genutzt werden.
- Wirtschaftlicher Nutzen der Flexibilität zu Flexibilitätseinschränkung
- Private Nutzer wollen möglichst wenige Fremdeingriffe (bspw. durch VNB), Auto ist in CH meist Privatsache

Flexibilitätspotentiale in Ihrem Netzgebiet - Wasserversorgung bzw. Abwasserentsorgung

Die teilnehmenden EVU haben die Fragen zu dieser Kategorie nicht ergiebig beantwortet.

Bewirtschaftung der Flexibilitäten durch Dritte heute

Vier der sechs EVU gaben an, dass Flexibilitäten in ihrem Netz durch Dritte bewirtschaftet werden. Dabei handelt es sich um Wärmepumpen, Batterien, PV-Anlagen, Notstromgruppen sowie eine Kirchenheizung. Bei zwei der sechs EVU ist nicht bekannt, dass Flexibilitäten durch Dritte bewirtschaftet werden.
Anhang 3: Interviewleitfaden Verbände

− Abgleich und Verifizierung der typischen Produktions- und Querschnittsprozesse in der Branche anhand der Vorrecherche B E T
− Welche wesentlichen Kernprozesse verbrauchen am meisten elektrische Energie in ihrer Branche?

<table>
<thead>
<tr>
<th>Wesentliche Kernprozesse</th>
<th>Art / Funktionsweise</th>
<th>Anzahl Unternehmen, bei denen dieser Prozess vorhanden ist</th>
<th>Anteil Gesamtstromverbrauch (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Welche Querschnittsfunktionen sind für Ihre Branche relevant:

<table>
<thead>
<tr>
<th>Wesentliche Kernprozesse</th>
<th>Art / Funktionsweise</th>
<th>Anzahl Unternehmen, bei denen dieser Prozess vorhanden ist</th>
<th>Anteil Gesamtstromverbrauch (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispielfragen:
− Gibt es den Bedarf in Ihrer Branche, bei Einsatz elektrischer Energie Produkte, Rohstoffe, Halbfertigerzeugnisse oder Gebäude etc. zu kühlen / zu erwärmen?
− Wird in der Branche Druckluft eingesetzt, was über kleine Kompressoren hinausgeht?
− Wird in Ihrer Branche irgendwo durch Einsatz von Pumpen, Fördereinrichtungen (Förderbänder etc.) Material von einem Ort / Niveau auf einen anderen umgelagert, wobei eine Speicherung vorhanden ist?
− Werden in Ihrer Branche bereits Möglichkeiten zur Flexibilisierung von elektrischen Verbrauchern genutzt resp. sind bekannt?
− Ist in den wesentlichen Prozessen / Querschnittsfunktion Flexibilitätspotential vorhanden? Wenn ja, welches?

<table>
<thead>
<tr>
<th>Prozess / Querschnittsfunktion</th>
<th>Leistung (min.)</th>
<th>Leistung (max.)</th>
<th>Schaltbare Leistung</th>
<th>Schaltbare Häufigkeit</th>
<th>Zeitrestriktionen</th>
<th>Aktivierungsdauer</th>
<th>Verschiebedauer</th>
<th>Speicherverfügbarkeit</th>
<th>Vorankündigungszeiten</th>
<th>Investitionskosten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

− Zukünftige Entwicklung: Welche Prozesse werden wichtiger / unwichtiger? Welche technologischen Fortschritte können erwartet werden?
− Was sind die Hemmnisse zur Nutzung vorhandener oder weiterer Flexibilitäten (Nennung oder kurze Beschreibung)?
Anhang 4: Interviewleitfaden Unternehmen

- Abgleich und Verifizierung der typischen Produktions- und Querschnittsprozesse des Unternehmens anhand der Vorrecherche B E T resp. der Angaben des Verbandes (wenn vorhanden)
- Welche wesentlichen Kernprozesse verbrauchen am meisten elektrische Energie in ihrem Unternehmen?

<table>
<thead>
<tr>
<th>Wesentliche Kernprozesse</th>
<th>Anteil Gesamtstromverbrauch (%)</th>
<th>Art / Funktionsweise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernprozess</th>
<th>Methode A</th>
<th>Methode B</th>
<th>Methode C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl Anlagen / Verbreitung</td>
<td>Typische Leistung (kW)</td>
<td>Produktionskapazität</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (Auswahl der Methode A und damit der Abfrage durch B E T)
- Welche Querschnittsprozesse sind für Ihrem Unternehmen relevant?

<table>
<thead>
<tr>
<th>Querschnittsprozesse</th>
<th>Anteil Gesamtstromverbrauch (%)</th>
<th>Art / Funktionsweise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prozess</th>
<th>Methode A</th>
<th>Methode B</th>
<th>Methode C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl Anlagen / Verbreitung</td>
<td>Typische Leistung (kW)</td>
<td>Produktionskapazität</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Auswahl der Methode A und damit der Abfrage durch B E T)
- Werden in Ihrem Unternehmen bereits Möglichkeiten zur Flexibilisierung von elektrischen Verbrauchern genutzt resp. sind bekannt?
- Ist den wesentlichen Prozessen / Querschnittsfunktion Flexibilitätpotential vorhanden? Wenn ja, welches?

<table>
<thead>
<tr>
<th>Prozess / Querschnittsfunktion</th>
<th>Leistung (min.)</th>
<th>Leistung (max.)</th>
<th>Schaltbare Leistung</th>
<th>Schaltbare Häufigkeit</th>
<th>Zeitrestriktionen</th>
<th>Aktivierungsduer</th>
<th>Verschiebedauer</th>
<th>Speicherfähigkeit</th>
<th>Vorankündigungszeiten</th>
<th>Investitionskosten</th>
</tr>
</thead>
</table>

- Betreiben Sie ein Notstromaggregat?
- Zukünftige Entwicklung: Welche Prozesse werden wichtiger / unwichtiger? Welche technologischen Fortschritte können erwartet werden?
- Was sind die Hemmnisse zur Nutzung vorhandener oder weiterer Flexibilitäten (Nennung oder kurze Beschreibung):
Anhang 5: Zusammenfassung der Verbands- und Unternehmensumfrage

Nachfolgend finden sich inhaltliche Zusammenfassungen (Transskripte) von telefonischen Interviews, welche mit verschiedenen Ansprechpartnern Mitte März bis Anfang April durchgeführt wurden. Insgesamt verfügen die angefragten Betriebe und Verbände nur vereinzelt über belastbare Aussagen zu den vorhandenen Flexibilitäten, da bislang keine Anreize bestanden, diese systematisch zu erfassen, um sie zu bewirtschaften.

Im Vordergrund steht vor allem bei den energieintensiven Unternehmen zunächst die Steigerung der Gesamtenergieeffizienz, bzw. die Senkung des Gesamtenergieverbrauchs und die Senkung des CO2-Ausstosses sowie die Optimierung der Prozesse. Grossverbraucher mit Zielvereinbarungen versuchen primär Jahresenergieverbräuche zu minimieren. Die Fähigkeit zur Lastverschiebung ist unter diesem Aspekt dabei nicht relevant.

Belastbare Aussagen für verschiedene Sparten und Branchen erfordern wegen der Heterogenität jeweils vertiefte Abklärungen, idealerweise mit Mitwirkung der jeweiligen Verbände. Wie mit den Ansprechpartnern vereinbart, werden sie nicht namentlich genannt, und das Unternehmen wird ebenfalls anonymisiert.

Detailhandelsunternehmen
(Energieexperte, Einzelhandels-Unternehmen, 27. März 2019)

In den Filialen wird durch das Ziel der höchstmöglichen Energieeffizienz und absoluter Einhaltung der Lebensmittelvorschriften kaum Flexibilitätspotential ausgemacht. Beispielsweise müssen die Lebensmittel strengen Vorgaben genügen und in einem engen Toleranzband von 0-2 Grad konstant gekühlt werden und der Betrieb der Backöfen richtet sich nach den Öffnungszeiten und der Kundennachfrage.

Die Unternehmung verfügt neben den Filialen über drei grosse, zentrale Kühlhäuser. Bei diesen gibt es ein gewisses Flexibilisierungspotential, welches allerdings wegen mangelnder tariflicher Anreize bis jetzt weder systematisch erhoben noch genutzt wurde. Sollten allerdings sowohl die Netznutzungsentgelte dynamischer ausgestaltet werden und das Energiepreisniveau sowie die Energiepreisvolatilität zunehmen, dann könnten Batterien eingesetzt werden zur Optimierung der Strombeschaffung unter Berücksichtigung der eigenen Produktion aus Photovoltaikanlagen. Darin wird insgesamt ein gewisses

Gas-, Wasser- und Wärmeversorgung
(Mitarbeiter Branchenverband, 1. April 2019)

(Mitarbeiter Branchenverband, 25. April 2019 (Interview und E-Mail-Verkehr))

Bei der Fernwärme spielen elektrische Gebläse und Pumpen im Vergleich zur Energie, die für die Wärmeerzeugung (z. B. Holzschnitzel, Biomasse) genutzt werden eine untergeordnete Rolle, bergen jedoch in Einzelfällen ein gewisses Flexibilisierungspotential. Bei der Produktion von Biogas gibt es ebenfalls ein gewisses Flexibilisierungspotential, je nach Grösse der Gärungs-/Gasspeicher. Insgesamt kam aber bislang dem Thema Flexibilisierungspotential im Vergleich zur Gesamtenergieeffizienzsteigerung eine untergeordnete Bedeutung zu. Dies ist insbesondere bei den Abwasserreinigungsanlagen der Fall.

Der befragte Experte stützt sich bei der Trinkwasserversorgung mehrheitlich auf die Studie «Potential der Schweizer Infrastrukturanlagen zur Lastverschiebung», BFE, Juni 2019. Die Trinkwasserversorgung braucht in der Schweiz rund 415 GWh Strom. Davon entfallen rund 85% auf die Förderung von See- und Grundwasser, weitere 10% auf die Desinfektion mit UV-Licht und die restlichen 5% auf die Filtration.

Zementherstellung
(Energie-Experten der Zementindustrie, 27. März 2019)

In der Schweiz gibt es sechs Zementwerke von unterschiedlicher Grösse, die gemessen an ihrer Wertschöpfung vergleichsweise viel Energie benötigen. Die Flexibilisierungspotentiale im Strombereich wurden bislang noch wenig ausgelerchnet und werden zurzeit auch nicht systematisch bewirtschaftet, insbesondere wegen fehlender tariflicher Anreize. Dazu kommt, dass Zement sehr empfindlich auf Wasser reagiert und nur begrenzt lagerbar ist. Zudem ist die Lagerung sehr teuer, da spezielle Lagerstätten...
gebaut werden müssen. Entsprechend ist es schwierig aus der Lagerung heraus Flexibilisierungspotentiale zu erhalten.

Abwasserreinigungsanlagen (ARAs)
(Fachingenieur aus dem Bereich Abwassertechnologie, 18. März 2019)

Bei den Abwasserreinigungsanlagen wird der grösste Teil der Energie für die biologische Reinigung des Wassers gebraucht. Daneben wird elektrische Energie für Pumpen, die mechanische Reinigung und die Belüftung gebraucht, sowie die Schlammbehandlung. Insgesamt ist die Abwasserreinigung sehr energieintensiv, umgekehrt wird mit der Gasherstellung in den Faultürmen auch Energie produziert. Mit diesen verfügen die ARAs über eine gewisse Flexibilität im Strombereich, wie die Studien (vgl. Regelpooling mit Infrastrukturkraftwerken Wasserversorgungen und Abwasserreinigungsanlagen, BFE, Dezember 2017) gezeigt haben. Beim Energieeinsatz spielt die Witterung eine Rolle und beeinflusst den Strombedarf erheblich z. B. beeinflussen starke Trockenheit oder intensive Regenfälle die Pumpbetrieb stärker, was die Flexibilitätsnutzung weiter einschränkt.

Maschinen-/Anlagenbau
(Energieexperte Maschinenbauunternehmen, 25. März 2019)

Die Messung und feinere Erfassung des Stromverbrauchs befindet sich in diesem spezifischen Industriebetrieb erst im Aufbau.

Giessereien
(Energieexperte Giessereibetrieb, 1. April 2019)

Stahlwerk
(Energieexperte Stahlwerk, 26. März 2019)

Unter Berücksichtigung der tatsächlichen Bedingungen werden aus technischer Sicht in diesem Stahlwerk zwei mögliche Optionen gesehen:
1. Stopp für max. zwei Stunden mit einer Vorankündigung von einer Stunde
2. Stopp für 5-10 Minuten, ohne Vorankündigung

Papier- und Kartonherstellung
(Energieexperte Papierfabrik, 25. März 2019)

Die Papierproduktion erfolgt in diesem spezifischen Werk im Schichtbetrieb rund um die Uhr und sieben Tage die Woche, entsprechend müssen auch Querschnittsfunktionen wie Druckluft rund um die Uhr zur
Verfügung stehen. Der Gesamtverbrauch beträgt 72 GWh pro Jahr, wovon weit über 90% für den eigentlichen Herstellungsprozess benötigt werden. Das mögliche Lastmanagement wird entsprechend als sehr gering eingeschätzt, teilweise lässt sich der Produktionsprozess aber im Viertelstundenbereich verschieben, beispielsweise um Spitzen zu vermeiden. Bei volatilen Strompreisen oder dynamischen Netznutzungsentgelten würde man versuchen das technische Potential der möglichen Lastverschiebung zu heben, sofern es sich rechnet und man würde zusätzlich mit darauf abgestimmten Strombeschaffungsstrategien reagieren.

Landwirtschaft
(Mitarbeiter Branchenverband, 1. April 2019)

Der Fragebogen konnte nicht ausgefüllt werden, zu heterogen sind die Mitglieder des Verbandes und zu detailliert die geforderten Angaben. Der Bauernverband selber verfügt nicht über detaillierte Erhebungen. Nichtsdestotrotz konnten einige Aussagen zum Flexibilisierungspotential gemacht werden.

Beim Gemüseanbau spielt vor allem die Wärmeerzeugung eine Rolle, welche aber über andere Energieträger erfolgt.

Anhang 6: Berechnungen des exemplarischen Er-enschliessungsaufwands

Die nachfolgende Kostenschätzung bezieht sich einerseits auf die Dissertation von Steurer sowie auf eigene Schätzungen von B E T, insbesondere für die Verkabelung der Aktoren und Sensoren.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Hersteller / Typ</th>
<th>Anzahl</th>
<th>Preis €</th>
<th>Total €</th>
<th>Total € x 1.14</th>
<th>Aufgerundet CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfamilienhaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS/LAN Gateway</td>
<td>Tixi Data Gateway LAN SD</td>
<td>1</td>
<td>588</td>
<td>588</td>
<td>670.32</td>
<td>800</td>
</tr>
<tr>
<td>Adapter für 6 Sensoren, 3 Aktoren</td>
<td>geschätzt</td>
<td>9</td>
<td>90</td>
<td>810</td>
<td>923.4</td>
<td>1200</td>
</tr>
<tr>
<td>Verkabeln</td>
<td>2er Team, 1 Tag, inkl. Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>1 Inbetriebnehmer, 1/2 Tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Total CHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>Landwirtschaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS/LAN Gateway</td>
<td>Tixi Data Gateway LAN SD</td>
<td>1</td>
<td>588</td>
<td>588</td>
<td>670.32</td>
<td>800</td>
</tr>
<tr>
<td>Diverse Adapter für 8 Sensoren / 4 Aktoren</td>
<td></td>
<td>12</td>
<td>90</td>
<td>1080</td>
<td>1231.2</td>
<td>1600</td>
</tr>
<tr>
<td>Verkabeln</td>
<td>2er Team, 2 Tage, inkl. Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>1 Inbetriebnehmer, 1/2 Tag</td>
<td>1</td>
<td>500</td>
<td>500</td>
<td>570</td>
<td>800</td>
</tr>
<tr>
<td>Total CHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8200</td>
</tr>
<tr>
<td>Industrie, bestehende SPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td></td>
<td>1</td>
<td>248</td>
<td>248</td>
<td>282.72</td>
<td>400</td>
</tr>
<tr>
<td>Umprogrammieren vorhandener SPS</td>
<td></td>
<td>1</td>
<td>1525</td>
<td>1525</td>
<td>1738.5</td>
<td>3000</td>
</tr>
<tr>
<td>Zusätzliche Aktoren</td>
<td></td>
<td>4</td>
<td>90</td>
<td>360</td>
<td>410.4</td>
<td>550</td>
</tr>
<tr>
<td>4-Kanal Ausgangsklemme</td>
<td>Wago 4-Kanal-Analogausgangsklemme</td>
<td>2</td>
<td>195</td>
<td>390</td>
<td>444.6</td>
<td>570</td>
</tr>
<tr>
<td>Verkabeln</td>
<td>2er Team, 1 Tag, inkl. Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>1 Inbetriebnehmer, 1 Tag</td>
<td>1</td>
<td>1150</td>
<td>1150</td>
<td>1311</td>
<td>1500</td>
</tr>
<tr>
<td>Total CHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8520</td>
</tr>
<tr>
<td>Objekt</td>
<td>Hersteller / Typ</td>
<td>Anzahl</td>
<td>Preis</td>
<td>Total</td>
<td>Total € x 1.14</td>
<td>Aufgerundet CHF</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>größeres KMU, ohne bestehende SPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td></td>
<td>1</td>
<td>248</td>
<td>248</td>
<td>282.72</td>
<td>400</td>
</tr>
<tr>
<td>Automationsstation/Zentral-Einheit</td>
<td>Controller ETHERNET; 3. Generation</td>
<td>1</td>
<td>801</td>
<td>801</td>
<td>913.14</td>
<td>568</td>
</tr>
<tr>
<td>4-Kanal Ausgangsklemme</td>
<td>Wago 4-Kanal-Analogausgangsklemme</td>
<td>6</td>
<td>195</td>
<td>1170</td>
<td>1333.8</td>
<td>1710</td>
</tr>
<tr>
<td>Diverse Adapter für 8 Sensoren / 4 Aktoren</td>
<td></td>
<td>12</td>
<td>90</td>
<td>1080</td>
<td>1231.2</td>
<td>1600</td>
</tr>
<tr>
<td>Verkabeln</td>
<td>2er Team, 2 Tage, inkl. Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>1 Inbetriebnehmer, 1 Tag</td>
<td>1</td>
<td>1150</td>
<td>1150</td>
<td>1311</td>
<td>1500</td>
</tr>
<tr>
<td>Total CHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10778</td>
</tr>
</tbody>
</table>
Anhang 7: Exkurs Notstromaggregate

Notstromaggregate gehören streng genommen nicht zum DSM, da sie allenfalls in der Lage sind, ein zusätzliches Potential in der (fossilen) Stromerzeugung bereit zu stellen. Auf Wunsch des Auftraggebers werden die Aggregate hier diskutiert, da sie eine dezentrale Flexibilitätsquelle darstellen können. Im Jahr 2014 waren rund 3000 Anlagen ohne Abwärmenutzung in der Schweiz installiert116. Notstromaggregate können mobil oder fest installiert sein. Aus Gründen der Verfügbarkeit für die Anwendungszwecke können an dieser Stelle nur fest installierte Einheiten qualitativ beurteilt werden. Sie lassen sich finden z. B. in Data-Centern, Kühlanlagen, oder in kritischer Infrastruktur wie z. B. Flughäfen oder Zivilschutzanlagen. Theoretisches Potential kann durchaus zur Verfügung stehen, ebenfalls ist technisches Potential denkbar, welches zudem kaum zeitlichen Schwankungen unterworfen ist. Das technische Potential ist aber regelmäßig dadurch begrenzt, dass die Brennstoffbevorratung und Brennstoffbewirtschaftung nicht auf hohe Benutzungsstunden ausgelegt ist. Zudem ist die Luftreinhalteverordnung gültig, nach der Anlagen ohne Abwärmenutzung maximal 50 Stunden pro Jahr betrieben werden dürfen117.

Die Anlagen können üblicherweise nicht unmittelbar in Betrieb genommen werden. Allenfalls dann, wenn sie dauerhaft vorgewärmt sind, können sie innerhalb von Minuten ihre Leistung erbringen118. Auch kann es aufgrund der Umweltschutzrichtlinien in Verbindung mit den technischen Restriktionen ist nur punktuelles Potential vorhanden, welches z. B. für die Anwendungszwecke Regelenergiemarkt (im Pool), Steuerung Eigenverbrauch genutzt werden könnte.

116 Vgl.: Notter, Benedikt; Graf, Cornelia (2016): „Emissionsinventar stationäre Motoren und Gasturbinen. Standbericht 2014“. Bern, S. 8

117 Vgl.: Luftreinhalteverordnung (LRV) vom 16.12.1985 in der Fassung vom 16.04.2019