
Zirkulär Bauen – Leitfaden für Planerinnen und Planer

Inhalt

5 Materialisierung5.1 Materialkonzept5.2 Materialkunde

5.3 Informationssysteme

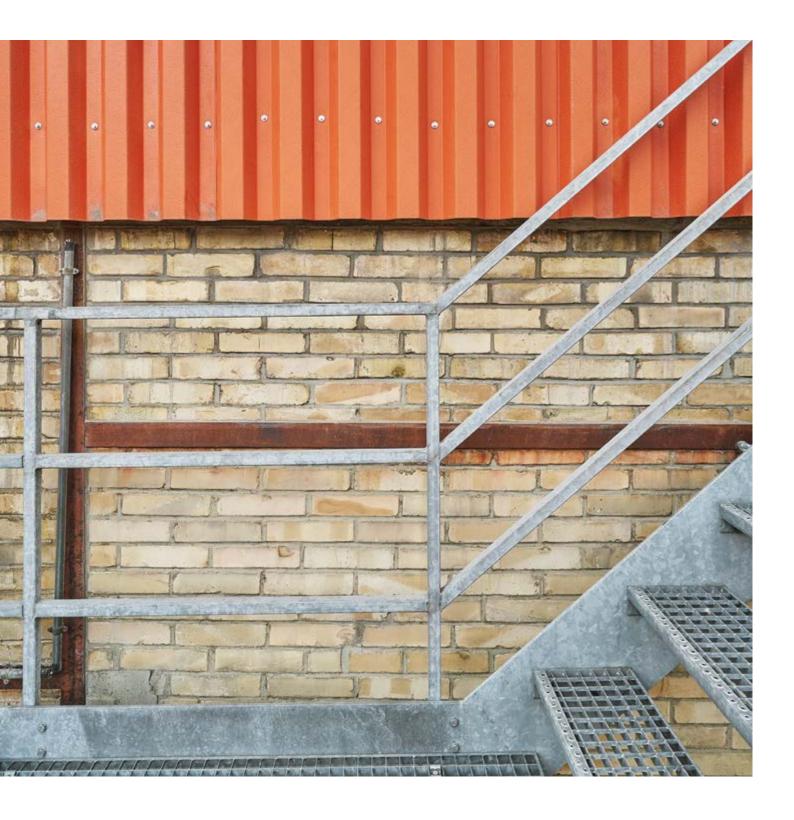
ment, Lausanne

5.4 Praxisbeispiel Maison de l'environne-

03		Einleitung	31	6	Neubau
				6.1	Gebäudekonzept
04	1	Grundlagen des zirkulären Bauens		6.2	Tragstruktur
	1.1	Kreislaufwirtschaft		6.3	Konstruktion
	1.2	Kontext		6.4	Materialisierung
	1.3	Die 5-R-Strategie		6.5	Praxisbeispiel Haus des Holzes, Sursee
	1.4	Praxisbeispiel Kopfbau Halle 118, Winterthur	36	7	Rückbau
				7.1	Gebäude als Materiallager
09	2	Strategie		7.2	Wiederverwendung
	2.1	Spannungsfelder beim zirkulären Bauen		7.3	Materialrückgewinnung
	2.2	Einfluss auf die Planungspraxis		7.4	Praxisbeispiel Nest-Unit Urban
	2.3	Zusammenarbeit			Mining and Recycling (UMAR), Dübendorf
14	3	Weiterbauen am Bestand	41	8	Rahmenbedingungen
14	3		41	8 8.1	Rahmenbedingungen Rechtlicher Rahmen
14	3.1		41	8.1	
14	3.1 3.2	Bedürfnisse klären	41	8.1 8.2	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards
14	3.1 3.2 3.3	Bedürfnisse klären Analyse des Bestands	41	8.1 8.2	Rechtlicher Rahmen Normen
14	3.1 3.2 3.3	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager,	41	8.1 8.2 8.3	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards
20	3.1 3.2 3.3 3.4	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen		8.1 8.2 8.3	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels
	3.1 3.2 3.3 3.4	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen und Materialien		8.1 8.2 8.3 9 9.1	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels Weiterführende Informationen
	3.1 3.2 3.3 3.4 4 4.1	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen und Materialien Angebot und Nachfrage		8.1 8.2 8.3 9 9.1 9.2	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels Weiterführende Informationen Weitere Leitfäden
	3.1 3.2 3.3 3.4 4 4.1 4.2	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen und Materialien Angebot und Nachfrage Beurteilung der Bauteilqualität		8.1 8.2 8.3 9 9.1 9.2	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels Weiterführende Informationen Weitere Leitfäden Anlaufstellen
	3.1 3.2 3.3 3.4 4 4.1 4.2 4.3	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen und Materialien Angebot und Nachfrage Beurteilung der Bauteilqualität Logistik		8.1 8.2 8.3 9 9.1 9.2	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels Weiterführende Informationen Weitere Leitfäden Anlaufstellen
	3.1 3.2 3.3 3.4 4 4.1 4.2 4.3 4.4	Bedürfnisse klären Analyse des Bestands Evaluation Eingriffstiefe Praxisbeispiel Marktgasse Freilager, Zürich Wiederverwendung von Bauteilen und Materialien Angebot und Nachfrage Beurteilung der Bauteilqualität		8.1 8.2 8.3 9 9.1 9.2	Rechtlicher Rahmen Normen Anforderungen aus Gebäudestandards und -labels Weiterführende Informationen Weitere Leitfäden Anlaufstellen

Abbildung Titelseite: Umnutzung Weinlager Basel von Esch Sintzel Architekten. (Foto: Philip Heckhausen)

Einleitung


Dieser Leitfaden soll Planerinnen und Planern beispielsweise der Disziplinen Architektur, Tragwerksplanung, Bauphysik und Brandschutz als Anleitung zum zirkulären Bauen dienen – konkret und praxisnah. Er behandelt die wichtigsten Fragen und Entscheidungen, mit denen sich interdisziplinäre Planungsteams im Hochbau befassen müssen, sei es beim Entwurf, bei einer Machbarkeitsstudie, im Vorprojekt oder bei der Ausführungsplanung.

Zirkuläres Bauen umfasst viele verschiedene Strategien und Konzepte, die eng miteinander verknüpft sind. Welche davon angewendet werden, hängt stark vom Objekt und der Bauaufgabe ab. Auf jeden Fall braucht es neue Prozesse und ein iteratives Vorgehen. Erfahrungswerte werden derzeit in immer zahlreicheren Projekten gesammelt.

Dieser Leitfaden will eine Übersicht über die grosse Palette an Lösungsmöglichkeiten beim zirkulären Bauen aufzeigen, abgestimmt auf die jeweilige SIA-Leistungsphase. Ausführlichere Informationen zu einzelnen Themen sind in den weiterführenden Dokumenten zu finden.

Gewisse Weichen für das zirkuläre Bauen werden sehr früh im Projekt gestellt. Zu diesem Zeitpunkt ist es die Aufgabe der Planerinnen und Planer, dieses Thema einzubringen, sofern dies noch nicht geschehen ist, und ihre Auftraggeberinnen und Auftraggeber zu unterstützen und zu beraten. Die wichtigen strategischen Entscheide trifft jedoch in der Regel die Bauherrschaft. Worauf sie bei diesen Entscheiden achten sollte und wie sie am besten vorgeht, thematisiert der Leitfaden «Zirkulär Bauen: Leitfaden für Investoren und Bauherrschaften» von EnergieSchweiz.

1 Grundlagen des zirkulären Bauens

1.1 Kreislaufwirtschaft

Die Kreislaufwirtschaft ist der Gegenentwurf zum heutigen linearen Wirtschaftsmodell von produzieren, nutzen und entsorgen. Ihr Ziel ist es, wirtschaftliche Aktivitäten und die Schonung von endlichen sowie die nachhaltige Nutzung von erneuerbaren Ressourcen in Einklang zu bringen. Dazu werden Gebäude, Strukturen, Materialien und Produkte so lange wie möglich genutzt, wiederverwendet oder rezykliert. Mit dem verlängerten Lebenszyklus reduzieren sich die vor- und nachgelagerten Treibhausgasemissionen sowie der grosse Verbrauch an Primärrohstoffen. Zudem entsteht weniger Abfall.

Gerade im Baubereich ist die Umstellung auf ein zirkuläres System wichtig. Der Bau und Betrieb von Gebäuden und Infrastrukturen ist verantwortlich für¹:

- rund ein Drittel der Treibhausgasemissionen,
- über 70 Prozent des Rohstoffbedarfs und
- über 80 Prozent des Abfallaufkommens der Schweiz.

Um diese Werte zu reduzieren und den Klimazielen gerecht zu werden, müssen Ansätze der Kreislaufwirtschaft beim nachhaltigen Bauen zum Standard werden. Dafür braucht es ein Umdenken aller Akteure, angepasste Strategien für die Gebäudeplanung und neue Konzepte für die Produktion von Bauprodukten respektive deren Verwendung.

1.2 Kontext

Politische Rahmenbedingungen

Die Schweiz hat sich mit dem Klimaabkommen von Paris dazu verpflichtet, ab 2050 nicht mehr Treibhausgase in die Atmosphäre auszustossen, als durch natürliche und technische Speicher aufgenommen werden (Netto-Null-Ziel). Die langfristige Klimastrategie 2050 des Bundes zeigt, wie dieses Netto-Null-Ziel erreicht werden kann. Mit dem Klima- und Innovationsgesetz (KIG), das seit Anfang 2025 in Kraft ist, wurde dieses Ziel rechtlich verankert.

Die Kreislaufwirtschaft ist ein wichtiges Instrument, um das Netto-Null-Ziel zu erreichen. Angestossen durch die parlamentarische Initiative «Schweizer Kreislaufwirtschaft stärken» wurde kürzlich das Umweltschutzgesetz revidiert. Es gibt dem Bundesrat unter anderem die Kompetenz, Anforderungen an das ressourcenschonende Bauen, wie die Wiederverwendung von Bauteilen, die Verwendung von umweltschonenden oder rezyklierten Baustoffen sowie an den Rückbau von Bauwerken zu stellen. Die Kantone erhalten parallel dazu mit der Revision des Energiegesetzes den Auftrag, Grenzwerte für graue Energie für die Erstellung zu erlassen. Gleichzeitig erarbeiten immer mehr Kantone und Städte Strategien zur Kreislaufwirtschaft.

Auch auf europäischer Ebene sind zahlreiche Bestrebungen in Gang, um die Kreislaufwirtschaft zu fördern. Dazu gehören auf übergeordneter Ebene die <u>EU-Taxonomie</u>, auf Umsetzungsebene die revidierte Bauproduktegesetzgebung sowie neue Anforderungen an die Nachhaltigkeitsberichterstattung. Für ausführliche Informationen siehe Kapitel 8 «Rahmenbedingungen».

Abgesehen von der Verwertung mineralischer Abfälle beruhen die meisten Massnahmen zur Kreislaufwirtschaft bisher noch auf freiwilliger Basis. Es ist aber zu erwarten, dass in den nächsten fünf bis zehn Jahren Vorgaben für das kreislauffähige Bauen gemacht werden.

Strategie Berufsverband

Der Schweizerische Ingenieur- und Architektenverein (SIA) hat in seinem 2020 veröffentlichten Positionspapier «Klimaschutz, Klimaanpassung und Energie» die Bedeutung der Kreislaufwirtschaft für die Planer- und Baubranche in einem der sechs Leitsätze festgehalten: «Der SIA setzt sich für einen sparsamen Einsatz von Ressourcen und den Ausbau der Kreislaufwirtschaft ein.» Zu diesem Zweck hat er die «Spurgruppe Kreislaufwirtschaft» ins Leben gerufen: Sie erarbeitete das Faktenblatt «Planen und Bauen in der Kreislaufwirtschaft» und überprüft, wo bei Normen und Ordnungen des SIA Anpassungen nötig sind.

¹ Diese Zahlen stammen aus dem Leitfaden «Zirkulär Bauen: Leitfaden für Investoren und Bauherrschaften». Da finden sich auch die zugehörigen Ouellen.

Refuse

Vermeiden: Bedarf hinterfragen und erhalten statt neu bauen

Rethink

Umdenken: Vorhandenes anders und flexibler nutzen

Reduce

Reduzieren: weniger Ressourcen verbrauchen. Emissionen und Abfälle reduzieren

Re-use

Wiederverwenden: Lebenszyklus von Bauteilen und Tragstrukturen verlängern

Recycle

Rezyklieren: Materialien wiederverwerten, möglichst wenig thermisch verwerten oder deponieren

Abbildung 1.1: 5-R-Strategie, Prinzipien für das zirkuläre Bauen.

Charta kreislauforientiertes Bauen

Mit der <u>«Charta kreislauforientiertes Bauen»</u> machen sich zwölf der grössten öffentlichen und privaten Bauauftraggeber in der Schweiz auf den Weg in Richtung Kreislaufwirtschaft. Mit dem Unterzeichnen der Charta bekennen sie sich gemeinsamen dazu,

- bis 2030 die Verwendung von nicht erneuerbaren Primärrohstoffen auf 50 % der Gesamtmasse zu reduzieren,
- die grauen Treibhausgasemissionen zu erfassen und stark zu reduzieren sowie
- die Kreislauffähigkeit bei Erneuerungen und Neubauten zu messen und stark zu verbessern.

1.3 Die 5-R-Strategie

Eine gute Entscheidungsgrundlage für das zirkuläre Bauen ist die übergeordnete Leitidee der Kreislaufwirtschaft, die 5-R-Strategie. Für den nachhaltigen Umgang mit Baumaterialien und Bauteilen postuliert sie folgende Hierarchie:

- 1. Refuse/Vermeiden
- 2. Rethink/Umdenken
- 3. Reduce/Reduzieren
- 4. Re-use/Wiederverwenden
- 5. Recycle/Rezyklieren

Nach diesen Prinzipien kann jeder Entscheid im Planungsprozess bezüglich seiner Nachhaltigkeit beurteilt werden (Abb. 1.1). An erster Stelle steht das Vermeiden (Refuse). Die naheliegende Lösung ist, Gebäude und ihre Bestandteile möglichst lange zu nutzen. Das bedeutet: weniger Ersatzneubauten. mehr am Bestand weiterbauen (mit einer möglichst geringen Eingriffstiefe) und funktionstüchtige Bauteile wiederverwenden. Damit dies gelingt, sollen Gebäude, die aus der Nutzung gefallen sind, anders oder flexibler genutzt werden (Rethink). Grundsätzlich gilt es, die erforderlichen Materialmengen zu optimieren (Reduce). Das bedeutet beispielsweise schlankere Strukturen, weniger Bauteilschichten, flächeneffiziente Grundrisse und Untergeschosse (idealerweise sogar ein Verzicht darauf) oder das intensivere Nutzen von Räumen durch Teilen. Damit Bauteile und -materialien möglichst lange im Kreislauf bleiben, sollen sie möglichst lange wiederverwendet (Re-use) und erst wenn das nicht mehr möglich ist, verwertet werden (Recycle).

Bei der Materialwahl für neue Gebäude oder Gebäudeteile sollten ressourcenschonende, regenerative und emissionsarme Baustoffe eingesetzt werden. Auch diese Materialien müssen effizient eingesetzt werden.

Kreislauffähige Gebäude können einfach an veränderte Anforderungen angepasst und somit lange genutzt werden. Dies gelingt mit einem flexiblen Gebäudekonzept, einer guten Bauqualität und dem Einsatz von langlebigen Materialien. Eine konsequente Systemtrennung stellt sicher, dass die

1 Grundlagen des zirkulären Bauens

Gebäude reparierbar und die Bauteile und Materialien am Ende ihrer Lebensdauer einfach rückbaubar sind. Dies ermöglicht sowohl das Wiederverwenden als auch das Recycling. Die Verwendung von Materialien und Produkten, die energetisch verwertet oder gar deponiert werden, soll wenn immer möglich vermieden werden.

Rohbau hat Gewicht

Bis zu 70 % der Masse und damit auch der Ressourcen eines Gebäudes stecken im Rohbau. Dies schlägt sich auch in der Treibhausgasbilanz der einzelnen Gebäudeteile nieder (Abb. 1.2). Dieser Materialverbrauch kann mit zirkulären Ansätzen massiv reduziert werden. Verlängert sich die Lebensdauer der Tragstruktur durch Erhalt oder Wiederverwendung oder kommen wiederverwendete Komponenten aus anderen Bauten zum Einsatz, hat das einen grossen Einfluss auf den Ressourcenverbrauch und die grauen Emissionen. Bei Neubauten oder neuen Gebäudeteilen liegen die grössten Hebel bei der Dimensionierung und Materialisierung des Rohbaus.

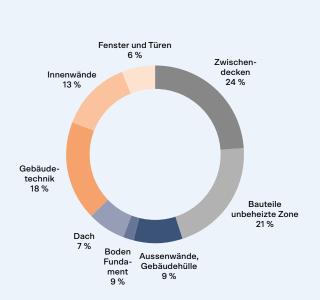


Abbildung 1.2: Bauteile und ihre durchschnittlichen Anteile an der Treibhausgasbilanz für die Gebäudeerstellung (in kg $\mathrm{CO_2eq/m^2}$ EBF). In blau: Bauteile der Gebäudehauptstruktur (Rohbau). Betrachtet wurden neun Mehrfamilienhäuser (Decken werden häufig mit einem vereinfachten Verfahren erfasst, was zu Ungenauigkeiten führt). (Quelle: Studie Klimapositiv Bauen)

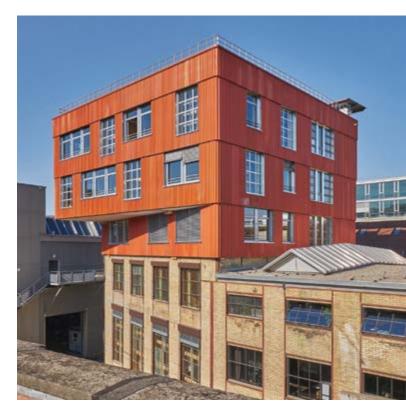


Abbildung 1.3: Die Fassade und die Tragstruktur des dreistöckigen Kopfbaus der Halle 118 auf dem Lagerplatz in Winterthur bestehen mehrheitlich aus wiederverwendeten Bauteilen. (Foto: baubüro in situ/Martin Zeller)

1.4 Praxisbeispiel Kopfbau Halle 118, Winterthur

Steckbrief					
Objekt	Kopfbau Halle 118, Winterthur				
Nutzung	Gewerberäume und Ateliers				
Baujahr	2021				
Bauherrschaft	Stiftung Abendrot, Basel				
Architektur	baubüro in situ, Zürich				
Fachplanung Zirkuläres Bauen	baubüro in situ, Zirkular GmbH				

Die rund hundertjährige Industriehalle 118 auf dem Lagerplatz-Areal in Winterthur wurde 2020 aufgestockt. Entwurf und Ausführung waren auf eine zirkuläre Bauweise ausgelegt. Heute umfasst das Gebäude acht Büros sowie das «Proof of Concept Lab» der Zürcher Hochschule für Angewandte Wissenschaften.

Mehr als die Hälfte der Strukturelemente und Bauteile dieser Aufstockung sind wiederverwendet: Stahlstützen, Holztafeln, der Treppenturm aus Stahl, die Fenster, die Fassadenverkleidung aus Alu

sowie weitere statisch und gestalterisch relevante Komponenten stammen aus rückgebauten Gebäuden. Wo nötig wurde mit mineralischen (aus Recycling) und pflanzliche Baumaterialien (Stroballendämmung) oder Lehmputz ergänzt.

Die wissenschaftliche Untersuchung ergab: Die Bilanz der grauen Treibhausgasemissionen für die Erstellung sank auf 4,1 kg $\mathrm{CO_2eq/m^2}$. Zum Vergleich: Der Basisgrenzwert 2 für Minergie-ECO Schul-Neubauten liegt bei rund 12 kg $\mathrm{CO_2eq/m^2}$. Die wiederverwendeten Materialien tragen, bei einem Gesamtanteil von über 50 % (am Volumen), nur etwa 1 % zu den Emissionen bei. Grund: In deren Bilanz muss gemäss der in der Studie verwendeten Methodik nur die vorgelagerte Lieferkette – also die Demontage am Rückbauobjekt, Transport und Lagerung sowie Aufbereitung und Montage – berücksichtigt werden, nicht aber die Herstellung und Entsorgung der wiederverwendeten Bauteile und -produkte.

Was war besonders?

- Der Entwurf folgt dem Prinzip «Design from Availability», priorisiert also Materialien, die spezifisch für das Projekt gesucht werden.
- Die Geometrie der verfügbaren Stahlkonstruktion gab die Raumhöhe und Grundrissdimension der Aufstockungsgeschosse vor.
- Da die wiederverwendeten Aluplatten unterschiedliche Profilformate aufwiesen und um Zuschnittverluste zu vermeiden, wurde die Aussenhülle geschuppt.
- Um die Dämmvorgaben zu erfüllen, wurden einige ältere, wiederverwendete Industriefenster zu einem zweischichtigen Kastensystem zusammengefügt.
- Der bescheidene U-Wert der wiederverwendeten Fenster (ca. 1,4 W/m²K) wurde durch gute Dämmung der Fassade (Stroh), des Daches und die kompakte Gebäudeform kompensiert.

Was sorgte für Zusatzaufwand?

- Die Synchronisierung der Bauteilsuche mit dem Zeitplan des Projekts: In der Projektierung beziehungsweise der Materialisierung wurden zeitliche Toleranzen für die Materialwahl bestimmt, um auf Zufallsfunde von wiederverwendbaren Bauteilen reagieren zu können.
- Die konstruktiven Anschlüsse zwischen wiederverwendeten Bauteilen und konventionellen
 Bauprodukten verlangten grosse Sorgfalt und
 mussten mit konsequenter Systemtrennung und
 gestalterisch berücksichtigten geometrischen
 Toleranzen konzipiert werden.

Was gelang nicht?

- Aus brandschutztechnischen Gründen mussten die wiederverwendeten H-Stahlträger mit einer verdübelten Deckenplatte aus Ortbeton (Membrandecke) vergossen werden.
- Fehlende Bereitschaft der Herstellerfirma verhinderten die Wiederverwendung einer verfügbaren Liftanlage.

Komponenten stammen aus rückgebauten Gebäuden. Wo nötig wurde mit mineralischen (aus Recycling) und pflanzliche Baumaterialien (Strobballendämmung) oder Lehmputz ergänzt.

Abbildung 1.4: Da die wiederverwendeten Alubleche unterschiedliche Profilformate aufwiesen und um Zuschnittverluste zu vermeiden, wurde die Aussenhülle geschuppt. (Plan: baubüro in situ)

2 Strategie

Es ist entscheidend, dass die Prinzipien des zirkulären Bauens von Projektbeginn an mitgedacht und jedem Planungsschritt zugrunde gelegt werden. Dazu gehört auch, dass die Rahmenbedingungen und klare Ziele definiert werden. Idealerweise verankern Bauherrschaften, Architekturschaffende und Fachplanerinnen und Fachplaner diese Aspekte bereits in ihrer Unternehmensstrategie, beziehungsweise in einer Nutzungsvereinbarung.

Da jede Bauaufgabe und jedes Projekt unterschiedlich ist und es noch keine Standardprozesse fürs zirkuläre Bauen gibt, braucht es einen offenen und kreativen Ansatz für die Lösungsfindung. Die frühe Zusammenarbeit aller Beteiligten führt zu besseren Ergebnissen. Es sollten mehrere Projektvarianten in Betracht gezogen und dabei verschiedene Materialien und Produktalternativen geprüft werden. Dieses iterative Vorgehen fördert innovative Ansätze und hilft, die besten Lösungen zu finden.

Es muss dem Planungsteam gelingen, die Zielkonflikte zwischen Materialverbrauch, Umweltauswirkungen, Eingriffstiefe, Energie- und Flächenverbrauch sowie den Ansprüchen der Nutzenden sorgfältig abzuwägen und eine passende Lösung zu finden.

Wichtige Instrumente, um zirkuläre Ansätze früh in ein Projekt zu integrieren und alle Beteiligten dafür zu motivieren, sind Wettbewerbe, Ausschreibungsverfahren, Vorstudien oder Pflichtenhefte. Weiterführende Informationen dazu finden sich im Dokument «Zirkulär Bauen: Leitfaden für Investoren und Bauherrschaften».

2.1 Spannungsfelder beim zirkulären Bauen

Kreativität: Zirkuläres Bauen fördert innovative Denk- und Designansätze. Der Entwurfsprozess orientiert sich am bestehenden Gebäude, der künftigen Nutzung des Gebäudes, den gesetzlichen und normativen Anforderungen, den Zielen der Bauherrschaft, den zur Verfügung stehenden Bauteilen und den Anforderungen des zirkulären Bauens wie Trennbarkeit, Nutzungsflexibilität oder ressourcenschonende Materialisierung. Um für all diese Aufgaben ästhetische Lösungen zu finden, braucht es eine neue, kreative Herangehensweise.

Baukultur: Der Erhalt von Bausubstanz und das Wiederverwenden von Bauteilen tragen zu einer hohen Baukultur bei und sind Zeichen der Wertschätzung von hochwertigem Handwerk und qualitätsvollen Bauprodukten. Auch der Einsatz von lokalen Materialien und Bauweisen stärkt die baukulturelle Qualität.

Verfügbarkeit Material: Da der Markt für wiederverwendete Bauteile und Materialien noch klein ist, kann es schwierig sein, das Passende zu finden. Erschwert wird die Suche durch fehlende oder ungenügende Dokumentation der verbauten Bauteile. Gleichzeitig sinkt durch die Wiederverwendung und den Einsatz lokaler Materialien die Abhängigkeit von globalen Lieferketten.

Wirtschaftlichkeit: Um die Wirtschaftlichkeit des zirkulären Bauens zu beurteilen, muss der gesamte Lebenszyklus des Gebäudes betrachtet werden. Die Planungskosten sind aufgrund der veränderten Prozesse höher. Gleichzeitig bieten sich Einsparmöglichkeiten, beispielsweise durch die Reduktion der Eingriffstiefe bei Erneuerungen sowie durch Weglassen von Untergeschossen oder Bauteilschichten (z. B. Verkleidungen). Ähnliches gilt für die Materialisierung: Hochwertige Materialien sind in der Anschaffung zwar teurer, dafür langlebiger und müssen weniger schnell ausgetauscht oder repariert werden. Beim Rückbau des Gebäudes

Abbildung 2.1: Werden Bauteile oder ganze Tragstrukturen wiederverwendet, wie hier bei der Aufstockung der Halle 118 in Winterthur, muss nachgewiesen werden, dass sie die Anforderungen des Zielgebäudes erfüllen. (Foto: baubüro in situ/Martin Zeller)

sinken die Kosten für die Abfallentsorgung, wenn Bauteile und Materialien wiederverwendet, weiterverkauft oder rezykliert werden können. Heute ist der Mehrwert des zirkulären Bauens aus rein ökonomischer Sicht noch schwierig zu beziffern. Weiterführende Informationen dazu finden sich im Dokument «Zirkulär Bauen: Leitfaden für Investoren und Bauherrschaften».

Komplexe Planung: Aufwendige Planungsprozesse und die interdisziplinäre Zusammenarbeit können zu Mehraufwand und erhöhten Risiken führen, was in der SIA-Honorarordnung schwierig abzubilden ist. Dies erfordert eine erfahrene und kompetente Planungs- und Bauleitung, die in engem Austausch mit der Bauherrschaft steht, damit diese sich der Situation bewusst ist. Je mehr sich dieses neue Vorgehen aber etabliert und je mehr Erfahrungen gesammelt werden, desto geringer wird der Mehraufwand, der von den Bauherrschaften anerkannt und vergütet werden sollte.

Regulatorische Rahmenbedingungen: Bei der Wiederverwendung von Bauteilen bestehen heute noch rechtliche Unsicherheiten bei der Haftung und Gewährleistung sowie der Entnahme von Bauteilen (siehe Kapitel 4.4 «Haftung und Garantie»). Auch Bauvorschriften oder Normen können die Umsetzung innovativer zirkulärer Konzepte erschweren, da sie primär auf den Bau mit Primärrohstoffen ausgerichtet sind. Hier gilt es, gemeinsam mit Fachleuten, Behörden und Bauherrschaft die Möglichkeiten auszuloten und eine pragmatische Lösung zu suchen.

2.2 Einfluss auf die Planungspraxis

Prozesse

Der Planungsprozess von kreislauffähigen Gebäuden gestaltet sich dynamischer als bei herkömmlichen Projekten. Gerade die Wiederverwendung von Bauteilen verlangt eine andere Herangehensweise. Das Vorgehen folgt nicht den üblichen Abläufen entlang der SIA-Phasen. Dasselbe gilt für die Leistungen. Abb. 2.2 (siehe nächste Seite) zeigt die wichtigsten Fragen und Entscheidungen sowie mögliche Anpassungen im Planungsprozess beim zirkulären Bauen.

Planungsprozess für das zirkuläre Bauen (SIA-Phasen und wichtige Fragen und Entscheide)

Initialisierung

- Absichtserklärung zum zirkulären Bauen
- Fachperson für zirkuläres Bauen beiziehen, siehe Kapitel 2.3
- Bedürfnisse formulieren und unter dem Gesichtspunkt der Suffizienz prüfen (Nutzungen, Komfort, Flächenbedarf), siehe <u>Kapitel 3.1</u>

Strategische Planung

- Bestand analysieren (Statik, Bauphysik, Schadstoffe etc.), siehe <u>Kapitel 3.2</u>
- Projektziele und Messgrössen zum zirkulären Bauen definieren (graue Treibhausgasemissionen, Anteil an lokalen und/oder regenerativen Materialien, Anteil an wiederverwendeten Bauteilen etc.) und mit anderen Projektzielen abgleichen
- Strategie für das zirkuläre Bauen erarbeiten: Fokus festlegen und Umgang mit Zielkonflikten definieren
- Evaluation der Eingriffstiefe mit dem Ziel, möglichst viel des Bestands zu erhalten, siehe Kapitel 3.3
- Spielraum hinsichtlich Programm und Nutzung ausloten, siehe <u>Kapitel 3.1</u>

Vorstudien

- Variantenstudium: Erhalt, Erneuerung, Umnutzung, Weiterbauen, Ersatzneubau. Grobabschätzung der Ökobilanzierung der Varianten
- Bauteilinventar des Bestands erstellen, Potenzial für Wiederverwendung (Re-use-Potenzial) abschätzen (siehe <u>Kapitel 3.2</u>), Wiederverwendungskonzept erarbeiten (siehe <u>Kapitel 7.2</u>)
- Identifikation von wiederverwendbaren Bauteilen aus externen Quellen (Bauteilsuche) und Vorbereitung der Beschaffung (Bauteilkatalog, Vorfinanzierung, Lagerung), siehe <u>Kapitel 4.1</u>
- Zusammenarbeit im Planungsteam definieren, siehe <u>Kapitel 2.3</u>

Projektierung

- Entwurf nach zirkulären Kriterien: ressourcenschonende Materialisierung, Material- und Flächeneffizienz, Nutzungsflexibilität, einfache Rückbaubarkeit, Systemtrennung, siehe Kapitel 6
- Überprüfung Ziele zirkuläres Bauen
- Begleitung des Entscheidungsprozesses durch eine phasengerechte Ökobilanzierung

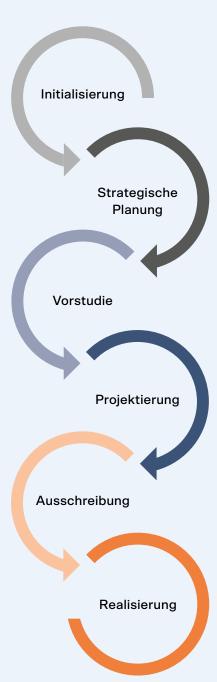


Abbildung 2.2: Planungsprozess für das zirkuläre Bauen.

- Grobkonzept Rückbau erstellen, siehe Kapitel 7
- Projektierung des Rückbaus wiederzuverwendender Bauteile
- Wiederverwendbare Bauteile: Auswahl,
 Eignungsprüfung, Vorbereitung Demontage,
 Lagerung und Logistik, siehe <u>Kapitel 4</u>
- Kommunikation mit der Baubehörde zum veränderten Vorgehen
- Gebäudebezogene Ressourcendokumentation, siehe Kapitel 4.2

Ausschreibung

- Ausschreibung enthält Kriterien und Kennwerte zum zirkulären Bauen
- Beschaffung externer wiederverwendbarer Bauteile, siehe <u>Kapitel 4.1</u>
- Materiallogistik, siehe Kapitel 4.3
- Ausschreibung Demontage
- Ausschreibung Ertüchtigung und Einbau wiederverwendeter Bauteile
- Passende Vertragsformen festlegen für langfristige Sicherung der Zirkularität (Rückkauf, Rücknahme, Rückverfolgbarkeit)
- Enge Zusammenarbeit zwischen Planenden und Ausführenden sicherstellen, sodass die Umsetzung der Planungsvorgaben gewährleistet ist

Realisierung

- Fachwissen zirkuläres Bauen sicherstellen (Bauleitung und -überwachung oder externe Fachperson)
- Schulung und kontinuierliche Information der ausführenden Firmen zu den Zirkularitätsvorgaben
- Zusätzlichen Bau- und Zeitaufwand einplanen und Risikopuffer für Unvorhergesehenes einplanen
- Dokumentation der Material- und Abfallflüsse auf der Baustelle, siehe Kapitel 7
- Gebäudebezogene Ressourcendokumentation, siehe Kapitel 4.2

2.3 Zusammenarbeit

Das zirkuläre Bauen verändert die Art der Zusammenarbeit im Projektteam. Die zirkuläre Arbeitsweise ist für viele Projektbeteiligte noch Neuland und deshalb eine Herausforderung. Viele offene Punkte können nur Schritt für Schritt und nur im Team gelöst werden. Viele der Akteurinnen und Akteure hatten bislang wenig miteinander zu tun. Deshalb müssen alle Beteiligten zum zirkulären Bauen bereit sein und Verantwortung dafür übernehmen. Die Aufgabe der Architektinnen und Architekten ist es, von Projektbeginn an alle relevanten Akteure in den Prozess einzubeziehen und aktiv mit der Bauherrschaft, den anderen beteiligten Fachplanern, den Bauunternehmern und den Behörden zu kommunizieren. Für die neue Art der Zusammenarbeit existieren bereits erste kooperative Projektabwicklungsmodelle, beispielsweise Allianzverträge oder die Methode «Design Build».

Neue Rollen

Die veränderten Prozesse und Abläufe verlangen nach zwei neuen Rollen mit spezifischem Fachwissen und Erfahrung im zirkulären Bauen. Sie müssen von Projektbeginn an besetzt sein, auch wenn es sich um externe Fachpersonen handelt.

- Fachplanung zirkuläres Bauen: Sie ermittelt, wo im Projekt das Potenzial für Zirkularität liegt und wie es genutzt werden kann. In enger Zusammenarbeit mit der Bauherrschaft und den Fachplanern formuliert sie realistische Zirkularitätsziele für das Projekt. Sie moderiert den gesamten Planungsprozess und stellt sicher, dass die jeweiligen Fachplanenden in die relevanten Planungsphasen miteinbezogen werden.
- Fachplanung Wiederverwendung: Sie beginnt bereits im Rahmen der Potenzialanalyse während des Projektentwurfs mit der «Bauteiljagd», das heisst sie identifiziert und sucht geeignete wiederverwendbare Bauteile. Zudem koordiniert sie die Zwischenlagerung von Bauteilen und berät zum Wiedereinsatz, bei der Ausschreibung und der Vergabe.

Wirkungskontrolle

Während des gesamten Planungsprozesses sollte immer wieder überprüft werden, wie einzelne Entscheidungen innerhalb eines Projektes auf Umwelt und Ressourcen wirken. Ein wichtiges Instrument hierfür ist die Ökobilanzierung. Mit ihr lassen sich

- der ökologische Fussabdruck quantifizieren,
- Zielkonflikte erkennen und
- verschiedene Varianten vergleichen.

Ein weiteres Instrument, das sich derzeit noch in Entwicklung befindet, ist der Zirkularitätsindikator. Er bewertet die Kreislauffähigkeit eines Gebäudes als Ganzes. Dadurch lassen sich Zielwerte formulieren, aber auch Gebäude miteinander vergleichen. Für die Berechnung eines solchen Indikators stehen unterschiedliche Methoden und Instrumente zur Verfügung. Für die Schweiz wurde der Leitfaden «Zirkularität messbar machen – ein Schweizer Zirkularitätsindikator» erarbeitet. Er berücksichtigt sowohl europäische Standards als auch spezifisch schweizerische Gegebenheiten. Entwickelt wurde er auf Initiative von Madaster Schweiz in Zusammenarbeit mit dem Bundesamt für Umwelt (BAFU) und verschiedenen öffentlichen und privaten Akteuren aus Bauwirtschaft. Standard- und Normenorganisationen sowie Forschungseinrichtungen.

Digitale Werkzeuge und Methoden

Die Planung, der Bau, der Betrieb und der Rückbau nach Kriterien der Kreislaufwirtschaft benötigen umfangreiche Informationen und Daten beispielsweise über

- verwendete Materialien,
- ursprüngliche Herstellerangaben,
- Montagemethoden,
- mögliche Demontageprozesse,
- graue Treibhausgasemissionen und
- Lebenszykluskosten.

Digitale Werkzeuge wie BIM-Modelle oder digitale Bauteilkataloge erleichtern das Erfassen, Verwalten, Austauschen und Analysieren dieser Informationen. Bei Neubauten oder umfassenden Erneuerungen oder Erweiterungen liefert die digitale Erfassung des Bestands eine verlässliche Datengrundlage für alle folgenden Arbeiten. Sie ermöglicht es, wiederverwendbare Bauteile zu lokalisieren oder Kubaturen zu schätzen.

Mit einer Ökobilanzierungssoftware können bereits früh im Planungsprozess ohne grossen Aufwand Aussagen zu Treibhausgasemissionen und Ressourcenverbrauch verschiedener Projektvarianten getroffen werden.

3 Weiterbauen am Bestand

Das Weiterbauen am Bestand bietet das grösste Potenzial zur Schonung des Klimas und der Ressourcen. Ein bestehendes Gebäude zu erneuern, verursacht je nach Eingriffstiefe vier bis fünf Mal weniger Treibhausgasemissionen als das Erstellen eines gleichwertigen Neubaus. Deshalb sollte die Variante Ersatzneubau nur in gut begründeten Ausnahmefällen die Lösung sein.

Das Bauen im und mit dem Bestand ist zentral, wenn man Baukultur erhalten will. Daraus haben sich erprobte Strategien und etablierte Methoden zur Erhaltung von Gebäuden entwickelt. Umfassende Informationen finden sich beispielsweise im Band «Erneuerung – nachhaltiges Weiterbauen» der Fachbuchreihe von EnergieSchweiz und den Kantonen (EnDK).

3.1 Bedürfnisse klären

An den Bestand angepasst

Ziel des Weiterbauens ist, das bestehende Gebäude mit möglichst geringen baulichen Eingriffen so anzupassen und zu verbessern, dass es den heutigen Bedürfnissen entspricht. Deshalb muss zu Beginn eines Projekts geprüft werden, wie weit das bestehende Raum- und Ausstattungsangebot zur künftigen Nutzung passt. Sinnvollerweise sollten die Nutzungsbedürfnisse so weit wie möglich passend zum Bestand und nicht nach fixen Vorstellungen definiert werden. Es soll auch in Betracht gezogen werden, ob eine veränderte Nutzung den Erhalt des Gebäudes ermöglicht.

Erwartungen hinterfragen

Ebenfalls zu überprüfen ist der spezifische Flächenbedarf für die jeweiligen Raumnutzungen. Ist er hoch, soll er soweit sinnvoll und möglich reduziert werden (Suffizienz). Dazu müssen Raumarchitektur und Betriebsdisposition aufeinander abgestimmt werden: Wie flexibel lassen sich Räume gestalten, damit sie etwa im tages- oder wochenzeitlichen Ablauf unterschiedlich nutzbar sind? Weiterbauen im Bestand hinterfragt jeden baulichen Eingriff und bevorzugt stattdessen ressourcenschonende Verbesserungen bei der Raumorganisation. Hier ist es sinnvoll, die zukünftigen Nutzerinnen und Nutzer des Gebäudes in die Evaluation einzubinden, sollten sie bereits bekannt sein.

Abweichungen von der Norm

In der Gesamtabwägung zwischen Erneuern oder Ersetzen werden traditionell die potenziellen Verbesserungen bei Energieeffizienz und Nutzungskomfort stark gewichtet. Für die kreislauffähige Entwicklungsstrategie braucht es eine zusätzliche Sensitivitätsanalyse: Wie wirken sich unterschiedliche Ausführungsstandards und Branchennormen (Schall, Raumklima) auf den baulichen Aufwand aus? In Absprache mit der Bauherrschaft respektive den Nutzergruppen kann daraus ein individuelles Anforderungsprofil abgeleitet werden.

Bei Pilotprojekten zur Erprobung von Lowtech-Konzepten wird bereits so differenziert vorgegangen. Dabei zeigt sich immer wieder: Lüftungskonzepte oder Schallschutzkonstruktionen lassen sich mit geringerem Aufwand realisieren, wenn Nutzungsgruppen frühzeitig eingebunden werden. Wird bei der Planung von den Normen abgewichen, muss nachgewiesen werden, dass projektspezifische Entscheide mit den zuvor festgelegten Qualitätsstandards vereinbar sind.

3.2 Analyse des Bestands

Eine wichtige Entscheidungsgrundlage für die verschiedenen Möglichkeiten des Weiterbauens ist eine umfassende Analyse des Gebäudebestands. Folgende Aspekte sollten vertieft betrachtet werden:

Tragwerk und Untergeschoss (Statik und Struktur)

Der Kern eines Gebäudes besteht aus den tragenden, horizontalen und vertikalen Elementen. Zur Beurteilung der Funktionstüchtigkeit sind detaillierte Informationen zum Aufbau der tragenden Bauteile, der konstruktiven Verbindungen und der Materialisierung erforderlich. Bei Altbauten fehlen jedoch oft Planungsdokumente; auch Oberflächenabdeckungen können die Analyse erschweren. Bei Bedarf werden deshalb spezifische Untersuchungen zur statischen Tragfähigkeit angeordnet.

Anhand solcher Informationen lassen sich die Optionen zum Weiterbauen festlegen: Ist eine bautechnische Ertüchtigung der Gebäudestruktur erforderlich, um Schwachstellen zu beheben? Oder erlaubt der Ausgangszustand eine Aufstockung?

Der Erhalt des Tragwerks hat einen grossen Einfluss auf den Ressourcenverbrauch und die Treibhausgasemissionen (siehe Kapitel 1, Abschnitt «Rohbau hat Gewicht»). Auch das Weiternutzen von Untergeschossen birgt ein grosses ökologisches Potenzial. Hier ist zu prüfen, ob die bestehende Struktur ertüchtigt oder der neuen Nutzung angepasst werden muss.

Gebäudehülle (Bauphysik)

Nicht tragende Elemente – Aussenwand, Fassadenverkleidung, Fenster oder Innenwand – müssen unterschiedliche bauphysikalische Anforderungen erfüllen. Allerdings muss der Wärmeschutz und der Schallschutz bei einer Gebäudeerneuerung oft zwingend verbessert werden. Da es sich um vergleichsweise kurzlebigere Systeme handelt, kann eine Erneuerung oder Ertüchtigung dieser Bauteile in der Regel konstruktiv gesondert von der tragenden Primärstruktur ausgeführt werden. Müssen Bauteile ersetzt werden, sollen sie möglichst aus einem Wiederverwendungspool stammen.

Potenzial für die Wiederverwendung (Re-use-Potenzial)

Für den Fall, dass ein Weiterbauen am Bestand nicht machbar ist oder gewisse Gebäudeteile rückgebaut werden müssen: Die Zustandsanalyse von tragenden und nicht tragenden Bauteilen liefert wesentliche Informationen zur möglichen Wiederverwendung – vor Ort oder in anderen Objekten (siehe Abschnitt «Material- oder Ressourcenpass» in Kapitel 4.2). Dazu gehören auch Hinweise zum Umgang bei Demontage und Wiedereinbau. Zudem sollen frühzeitig Hinweise dazu gesammelt werden, wie wiederverwendbare, aber vor Ort nicht länger benötigte Bauteile am Markt verfügbar gemacht werden können.

Struktur und Grundrisse

Um die Nutzungsstruktur neuen Bedürfnissen anzupassen, können nicht tragende Trennwände entfernt oder verschoben werden. Allerdings lässt sich das Raumangebot in bestehenden Gebäuden oft nicht beliebig verändern. Neben der Tragstruktur grenzen auch Erschliessungszonen (Treppenhaus, Flur) oder Steigzonen für die Gebäudetechnik die möglichen Anpassungen ein. In der Zustandsanalyse sollen machbare Veränderungen geprüft werden, beispielsweise die Anpassung der Grundrisse oder das Einhausen der Balkonschicht.

Schadstoffe

Der Gebäudebestand widerspiegelt das Wissen früherer Bautraditionen. Es muss davon ausgegangen werden, dass die Bausubstanz mit Schadstoffen belastet ist. Deshalb ist eine Schadstoffanalyse bei bewilligungspflichtigen Bauvorhaben bei Gebäuden mit Baujahr vor 1990 gesetzlich vorgeschrieben. Die Gebäudestandards Minergie-ECO und SNBS fordern für alle Modernisierungen, Erneuerungen und Rückbauvorhaben an Bauten mit Baujahr vor 1990 einen Gebäudecheck auf Schadstoffe.

Für die Probenahme und die Analyse empfiehlt sich der Beizug einer Fachperson. Bei Verdacht auf Schadstoffe müssen die entsprechenden Bauteile saniert oder entsorgt werden. Nur wenn eine unmittelbare Gefährdung von Mensch und Umwelt ausgeschlossen werden kann, können sie weitergenutzt werden. Für die externe Wiederverwendung sind schadstoffhaltige Bauteile nach sachgerechter Demontage und Sanierung geeignet.

Zum Thema Schadstoffe und wiederverwendbare Bauteile wird derzeit im Auftrag des BAFU ein Projekt durchgeführt. Der Bericht wird Ende 2025 erscheinen.

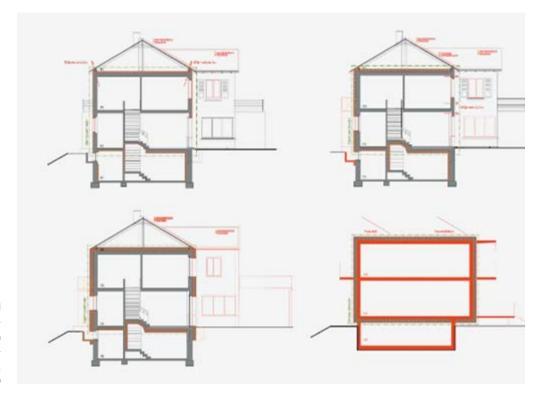


Abbildung 3.1: Beispiel für ein Variantenstudium. (Quelle: Buch «Erneuerung – nachhaltiges Weiterbauen», Faktor Verlag)

3.3 Evaluation Eingriffstiefe

Die Bestandsanalyse und die Nutzungsbedürfnisse bilden die Grundlage für die Evaluation der Eingriffstiefe. Hierzu müssen Varianten geprüft werden (siehe Abb. 3.1), wie mit der bestehenden Gebäudesubstanz umgegangen werden soll. Die möglichen Optionen sind: erneuern, umnutzen, erweitern oder ersetzen. Dabei sollte der Entscheidungsrahmen – in gegenseitiger Absprache zwischen Bauherrschaft und den Planenden – möglichst offengehalten werden.

Vertiefte Analysen und Planungsstudien sind je nach Projekt sinnvoll:

- Ein übergeordnetes Testplanungsverfahren, um unterschiedliche Entwicklungsoptionen einander gegenüberzustellen.
- Machbarkeitsstudien, mit denen sich verschiedene Erneuerungsstrategien für Gebäude evaluieren lassen.
- Im Programm eines Wettbewerbs sollen differenzierbare Erhaltungs- und Erneuerungsstrategien für «Ersatzneubau» versus «Weiterverwendung von Gebäuden» gleichberechtigt akzeptiert werden, falls ein Ersatzneubau nicht von vorneweg ausgeschlossen werden kann.

3.4 Praxisbeispiel Marktgasse Freilager, Zürich

Steckbrief				
Objekt	Freilager Albisrieden Zürich, Marktgasse			
Nutzung	Wohnen, Gewerbe			
Baujahr	Gestaltungsplan 2004–2010, Projekt 2008–2016			
Bauherrschaft	Freilager AG Zürich			
Architektur	Meili & Peter Architekten AG			
Fachplanung Zirkuläres Bauen	keine			

Auf dem Areal des ehemaligen Zollfreilagers in Zürich-Albisrieden entstand zwischen 2008 und 2016 ein neues, dicht bebautes Quartier mit rund achthundert Mietwohnungen sowie 18 000 m² Gewerbe- und Büroflächen. Auf dem Freilager-Areal wohnen und arbeiten mehr als 2500 Personen.

Abbildung 3.2: Zwei aufgestockte ehemalige Lagerhallen bilden die Marktgasse im Freilager-Areal in Zürich-Albisrieden. (Foto: Georg Aerni)

Ein Teil der ältesten Bausubstanz konnte erhalten werden: Zwei imposante drei- und viergeschossige, 135 m lange Lagerhallen, die zwischen 1926 und 1927 nach Plänen der Architekten Pfleghardt & Haefeli gebaut wurden. Im Innern überraschen die alten Lagerhallen mit Raumtiefen bis 24 m, eindrücklichen Raumhöhen und einem prägnanten Betontragwerk mit in einem Raster von 5 x 5 m angeordneten Pilzstützen.

Die beiden historischen Gründerbauten aus Backstein wurden mit je drei Wohngeschossen aufgestockt. Im selben Raster wie der Bestand wurde das statische Prinzip in einer massiven Stützen-Plattenbauweise vertikal erweitert. Dabei entstanden 195 Wohnungen mit einer Vielfalt von 56 Wohnungstypen. Die Bestandssubstanz wurde mit einer mineralischen Innendämmung ertüchtigt. Der Ausdruck der ursprünglichen Backsteinfassade konnte dabei bewahrt werden. Die Transformation von einer Lager- zu einer Wohnnutzung ist von aussen durch die neuen, nierenförmigen Balkone ablesbar.

Zwischen den beiden Gebäuden liegt die Marktgasse, die dank Restaurants und Läden im Sockelgeschoss zum Zentrum des Areals geworden ist. Da das Freilager-Areal das 2000-Watt-Areal-Label trägt, war der Erhalt des Bestands ein wichtiger Beitrag für die geforderten tiefen Treibhausgasemissionen in der Erstellung. Das Gebäude wurde entsprechend nach Minergie-ECO zertifiziert.

Was war besonders?

Eine Zustandsanalyse sowie eine Überprüfung der Tragsicherheit der Betonstruktur der beiden Backsteinbauten ergab, dass sie für eine Aufstockung geeignet waren. Trotz der höheren ständigen Lasten waren lediglich eine minimale Verstärkung der Fundation, aber keine aufwendigen Stützenummantelungen nötig.

Was sorgte für Zusatzaufwand?

Die Wohnnutzung machte neue Treppenhäuser notwendig, wofür Einschnitte ins Tragwerk vorgenommen werden mussten. Damit dieser Eingriff möglichst gering ausfiel, bündelten die Architekten die Erschliessung in vier Treppenhäuser, die gleichzeitig die Aussteifung der Gebäude übernehmen.

Was waren die grössten Herausforderungen?

Die Bautiefe von 24 m und das Stützenraster von 5 m sind für die Wohnnutzung eigentlich ungeeignet. Deshalb war die Anordnung der Grundrisse eine entwerferische Herausforderung. Mit nicht tragenden, frei vom Raster angeordneten Innenwänden konnten Grundrisstypen entwickelt werden, die eine für den Wohnungsbau sinnvolle Grundrissanordnung ermöglichen und gleichzeitig die Pilzstützen als plastisches und gliederndes Element in die Räume integrieren.

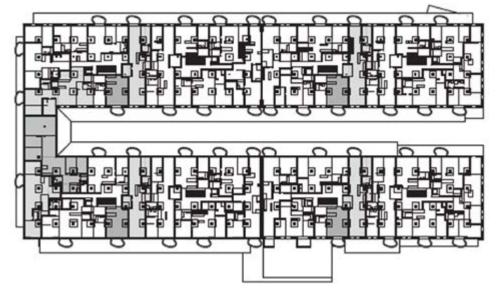


Abbildung 3.3: Die charakteristischen Pilzstützen wurden in die Räume integriert. (Foto: Georg Aerni)

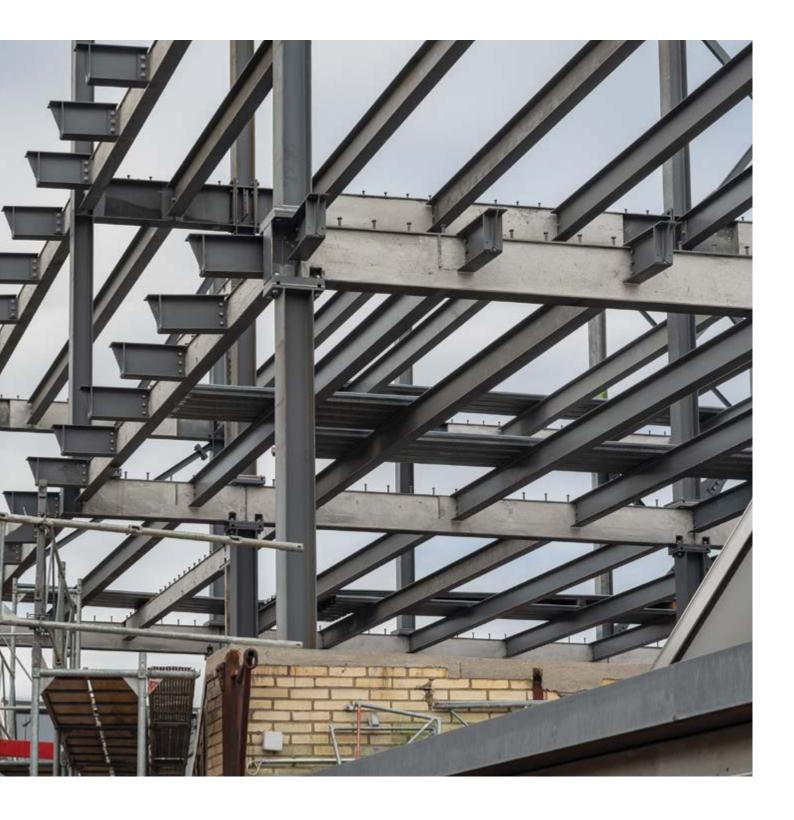


Abbildung 3.5: Für die neuen Treppenhäuser waren Einschnitte ins Tragwerk nötig. (Foto: Studio Gataric Fotografie)

Abbildung 3.4: Grundrisse 1. Obergeschoss. (Plan: Meili & Peter Architekten AG)

4 Wiederverwendung von Bauteilen und Materialien

Der Gebäudesektor verursacht viel Abfall. Zu viele Bauteile, Baustoffe, Baumaterialien und Aushuberde enden in der Entsorgung (Abb. 4.1). Werden rückgebaute Bauteile und Materialien stattdessen im selben Gebäude weiterverwendet oder andernorts wiederverwendet, reduziert sich der Bedarf an primären Ressourcen. Die Weiter- und Wiederverwendung von Bauteilen ist auch eine vielversprechende Strategie zur Senkung der indirekten Treibhausgasemissionen bei der Erstellung eines Gebäudes. Voraussetzung dafür ist ein selektiver Rückbau (siehe Kapitel 7 «Rückbau»).

Veränderter Entwurfsprozess

Das zirkuläre Bauen beginnt mit einem Entwurfsprozess, der das Weiterverwenden und Wiederverwenden von Bauteilen und Baumaterialien zum – je nach Projektansatz – Bestandteil bis Hauptthema für das Design und die Konstruktion bestimmt («Design from Availability»). Weiter- und wiederverwendbare Bauteile und Baumaterialien lassen sich systematisch in den Planungsprozess einbinden, wenn darauf insbesondere in den Leistungsphasen Entwurf, Materialisierung und Vergabe/Beschaffung Rücksicht genommen wird. Mit phasengerechten Ökobilanzen lässt sich die Wirksamkeit des Vorhabens überprüfen.

4.1 Angebot und Nachfrage

Welche Bauteile sind verfügbar?

Zuerst stellt sich immer die Frage nach der Verfügbarkeit: Welche wiederverwendbaren Materialien und Bauteile stehen in welcher Qualität zur Verfügung? Aus welchen Quellen lassen sie sich beziehen?

Architekturwettbewerbe, deren Programm eine Wiederverwendung von Bauteilen und Bauprodukten verlangt, sind häufig mit einem Katalog an verfügbaren Bauteilen ausgestattet. Dieser Materialpool ist meistens bereits im Besitz der Projektträgerschaft.

Alternativ dazu kann das Planungsteam eine eigene Suche nach wiederverwendbaren Bauteilen und Bauprodukten veranlassen. Potenzielle Quellen sind externe Bauteilbörsen oder Objekte aus dem Gebäudebestand, denen ein Rückbau droht. Spezialisierte Firmen respektive die Fachplanung zirkuläres Bauen/Wiederverwendung organisiert eine solche Bauteilsuche, bei welcher der Rückbaumarkt nach wiederverwendbaren Bauteilen und Materialien durchforstet wird.

Bauabfälle in der Schweiz (in Tonnen)

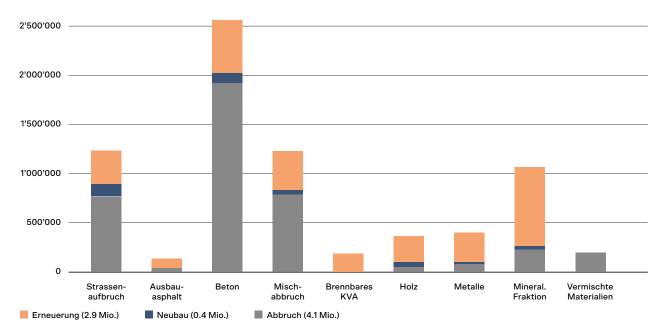


Abbildung 4.1: Mehr als die Hälfte der Bauabfälle in der Schweiz werden durch Abbrüche verursacht. (Quelle: Bauabfälle in der Schweiz – Hochbau, 2015, BAFU)

Abbildung 4.2:
Beim Kultur- und
Gewerbehaus Elys in
Basel wurden 200
Fenster wiederverwendet, die sich in
Farbe, Form und
Material stark unterscheiden. (Foto:
baubüro in situ/
Martin Zeller)

Flexibilität bei der Planung

Im Vergleich zu einem konventionellen Ablauf benötigt das Planen mit wiederverwendbaren Bauteilen und Baumaterialien mehr Flexibilität im Entscheidungsverfahren. Weil die Bauteilsuche parallel zur Entwurfsphase verläuft, sind bauteilund materialbezogene Entscheide phasengerecht zu treffen. Wie Pilotprojekte belegen, ist das Bauen mit wiederverwendbaren Bauteilen als eigenständige, kreative Designaufgabe zu verstehen. Wo immer typengleiche Bauteile in heterogener Beschaffenheit (Farbe, Oberfläche) organisiert werden können, lässt sich diese Vielfalt gestalterisch flexibel in das Gebäudedesign integrieren.

Anforderungen an demontieren und wiedereinbauen

Die zirkuläre Bauweise setzt voraus, dass Bauteile, Baumaterialien und Bauprodukte am Ende ihrer Nutzungsperiode einfach demontierbar sind und für den nächsten Nutzungszyklus in einem anderen Hochbau ebenso unkompliziert wiedereingebaut werden können. Der konstruktive Aufwand hält sich bei der Wiederverwendung von Bauteilen in Grenzen, wenn sie als Ganzes und mit demselben Zweck weitergenutzt werden können.

Die Demontage von wiederverwendbaren Bauteilen muss sorgfältig geplant und auf die spezifischen Anforderungen des Wiedereinbaus ausgerichtet werden. Beim Wiedereinbau muss darauf geachtet werden, dass auch hier ein nachträglicher Rückbau einfach ausgeführt werden kann. Zudem müssen die wiederverwendeten Bauteile im Gebäuderessourcenpass erfasst werden.

Nicht zu vernachlässigen ist jedoch, dass sich die Qualitätsansprüche an Neubauten oder Gebäudeerneuerungen auf einzelne Bauteile beziehen. Deshalb ist vorgängig zu prüfen, ob wiederverwendbare Bauteile und Baumaterialien hinsichtlich der Anforderungen an Sicherheit, Schallschutz oder Wärmeschutz ertüchtigt werden müssen, beziehungsweise Lösungen im Gebäudesystem (z. B. Systemenergienachweis) gefunden werden können.

4.2 Beurteilung der Bauteilqualität

Technischer Zustand und Wiederverwendungspotenzial

Ob ein Bauteil wiederverwendbar ist, wird auch von seinem technischen Zustand bestimmt. Deshalb müssen in der Projektvorbereitung Informationen zur Qualität gesammelt und dokumentiert werden. Eine solche Dokumentation umfasst zwei Teile: einerseits die Analyse von material- und nutzungsspezifischen Eigenschaften und andererseits die Bewertung des Wiederverwendungspotenzials. Europaweit sind derzeit verschiedene Initiativen im Gang, um Bauprodukte hinsichtlich einer Wiederverwendung systematisch zu erfassen – auf staatlicher, normativer oder unternehmerischer Ebene.

Material- oder Ressourcenpass

Material- oder Ressourcenpässe für Gebäude, die Informationen zur Verfügbarkeit breit zugänglich machen, sind erst in Entwicklung. Ein solcher Material- oder Ressourcenpass spezifiziert die chemischen, technischen und ökologischen Eigenschaften des ursprünglich eingebauten Materials und ergänzt diese Informationen mit Herstellerangaben und der Nutzungsgeschichte des Bauteils. Ebenso relevant sind aktualisierte Materialprüfungen sowie ein digitaler Code zur Identifizierung des Installationsstandorts. Zur Vereinfachung des Datenmanagements werden Informationssysteme entwickelt, die sich in das Building Information Modelling (BIM) integrieren lassen.

Eine gebäudebezogene Ressourcendokumentation dient mehreren Zwecken. Zum einen beinhaltet sie die wesentlichen Informationen, um eine Weiterund Wiederverwendung auf Projektebene sicherzustellen. Die Dokumentation liefert wesentliche Planungsgrundlagen, um das Wiederverwendungspotenzial für die verbauten Materialen unmittelbar abschätzen zu können. Zum anderen soll sie auf übergeordneter Ebene sensibilisieren, zum Beispiel indem die Eigentümerschaft daran den Wert der gelagerten Ressourcen erkennt. Ein weiterer Nutzen liegt beim Unterhalt der Gebäudeteile während der Nutzungsphase.

Die revidierte europäische Bauprodukteverordnung verlangt die Einführung von digitalen Produktpässen (siehe Kapitel 8.1 «Rechtlicher Rahmen»). Diese Anforderung wird voraussichtlich in die Schweizer Gesetzgebung übernommen.

4.3 Logistik

Organisation und Fachplanung

Zur Steuerung eines Wiederverwendungsprojekts sind folgende Prozesse vorzusehen: Identifikation, Bewertung, Dokumentation, Demontage, Logistik und Wiedereinbau der Bauteile. Bei Bedarf zieht das Planungsteam eine Fachplanung zirkuläres Bauen/Wiederverwendung bei. Zu den Leistungen, die über das Auftragshonorar abzugelten sind, gehören das Wiederverwendungskonzept, die Bauteilsuche, die Organisation von Umschlag- und Lagerplätzen sowie technische Anleitungen für Demontage, Wiedereinbau und Unterhalt der Gebäudeteile während der Nutzungsphase. Die Bau-

teilbeschaffung, Lagerung, Aufbereitung und das Fachbauleitungshonorar werden dagegen in die Baukosten eingerechnet.

Dokumentation und Datenmanagement

Vorgängig zur Materialbeschaffung wird ermittelt, welche Materialien gesucht sind und woher diese stammen könnten. Die Dokumentation des verfügbaren Inventars ist eine wichtige Arbeitsgrundlage für die Gesamtplanung. Darin sind zu jedem konstruktiven Bauteil die nachgefragten Mengen und die qualitativen Merkmale aufgeführt.

Lagerung und Timing

Die Materialbeschaffung ist auch logistisch vorzubereiten. Wie der noch junge Bauteilmarkt zeigt, ist mit Zusatzaufwand und mehr Zeitbedarf zu rechnen. So braucht es Sammel- und Lagerplätze für verfügbare Rückbaumaterialien, die erst zu einem späteren Zeitpunkt für den Wiedereinbau benötigt werden. Ihre Aufbereitung und das Bereitstellen für den Einbau benötigt ebenfalls Platz.

4.4 Haftung und Garantie

Bauvorschriften

Die kantonalen Bauvorschriften beziehen sich bei bauteilbezogenen Anforderungen (Sicherheit u. ä.) meistens auf technische Normen des SIA. Bei wiederverwendbaren Bauteilen ist in Erfahrung zu bringen, ob diese nach Ablauf der ersten Nutzungsperiode noch dem aktuellen Stand der Technik entsprechen. Baubewilligungen für Wiederverwendungsvorhaben sind grundsätzlich zulässig, umso mehr, wenn die Behörde ihrerseits Ermessensspielräume ausnutzt, respektive eine projektspezifische Interessensabwägung für Ausnahmebewilligungen vornehmen kann.

Haftung

Gemäss den baurechtlichen Abklärungen der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) ist das Haftungsrisiko beim zirkulären Bauen nicht grundsätzlich anders zu beurteilen als bei einer konventionellen Bauweise. Insofern gelten die üblichen Fristen für eine Rüge (zwei Jahre) sowie die Verjährung von verdeckten Mängeln (fünf Jahre). Zu beachten ist, dass Unternehmen, die

Bauteile ausbauen oder liefern und den Wiedereinbau ausführen, ihrerseits keine Haftung für die Mängelfreiheit der gebrauchten Bauteile übernehmen. Zur Reduktion des Mängelrisikos kann jedoch vorgesorgt werden, zum Beispiel indem eine sorgfältige Auswahl und spezifische Prüfpflichten oder zusätzliche Inspektions- und Unterhaltsarbeiten angeordnet werden.

Wechsel der Eigentümerschaft

Das Bauproduktegesetz (BauPG) regelt das erstmalige Inverkehrbringen; für einen wiederholten
Einbau oder die Wiederverwendung ist das Gesetz
bisher noch nicht zuständig. Ableiten lässt sich indirekt aber, dass die Eigentümerschaft des Werks
(also der Liegenschaft) für eine sichere Nutzung
des (wiederverwendeten) Produkts verantwortlich
ist. Ist die Eigentümerschaft bereits im Besitz der
Bauteile, weil sie zum Beispiel im selben Gebäude
weiterverwendet oder in einem anderen Objekt aus
dem eigenen Immobilien-Portfolio wiederverwendet werden, entfallen weitere rechtliche Aspekte.

Das ZHAW-Gutachten empfiehlt allerdings, die sicherheitsrelevanten Aspekte eines wiederverwendbaren Bauteils (Rutschfestigkeit, Glasbruch, Absturzsicherung) zusätzlich zu dokumentieren.

Ausführliche Informationen finden sich in den Dokumenten des Innosuisse-Projekts «Wiederverwendung von Bauteilen: Rechtlicher Rahmen».



Abbildung 4.3: Der 16-geschossige Turm, der früher vom Duftstoff-Hersteller Firmenich genutzt wurde, erhielt durch farbige PV-Module an den Fassaden eine optische Auffrischung und erzeugt nun erneuerbaren Solarstrom. (Foto: Eric Rossier)

4.5 Praxisbeispiel PAV Pointe Nord, Genf

Steckbrief

Objekt	PAV Pointe Nord
Nutzung	Verwaltung
Baujahr	2020–2023
Bauherrschaft	Pensionskasse des Staates Genf (CPEG)
Architektur	F. Baud & T. Früh Atelier d'Architecture SA
Fachplanung Zirkuläres Bauen	F. Baud & T. Früh Atelier d'Architecture SA

Wo die Stadt Genf im Süden auf die Gemeinden Lancy und Carouge trifft, befinden sich mehrere gut erschlossene ehemalige Industrieareale. Im Norden dieses als «Praille Acacias Vernets» (PAV) bezeichneten Gebiets erwarb die Pensionskasse des Kantons Genf 2017 die Parzelle «Pointe Nord». Deren Wahrzeichen ist ein 16-geschossiger Turm, der früher vom Duftstoff-Hersteller Firmenich genutzt wurde. Er wurde zusammen mit drei benachbarten Bauten zwischen 2020 und 2023 in ein Verwaltungszentrum für verschiedene Dienststellen des Kantons Genf transformiert. Der Fokus lag dabei auf der Kreislaufwirtschaft: Ein möglichst grosser Anteil der Strukturen und Bauteile sollte weiter- respektive wiederverwendet werden.

Das Team von F. Baud & T. Früh Atelier d'Architecture SA (BFSA) liess daher zuerst eine Bestandsaufnahme durchführen, um wiederverwendbare Materialien zu identifizieren. Ein Grossteil des Innenausbaus liess sich vor Ort wiederverwenden, während gut erhaltene Tische, Leuchten oder Sessel sowie Küchengeräte über einen lokalen Partner

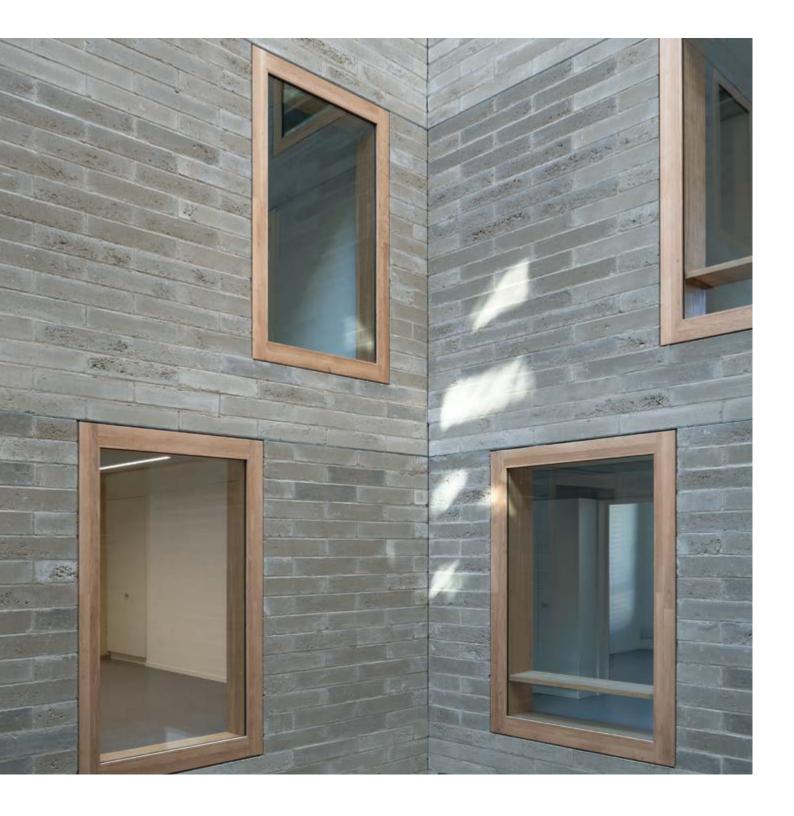
Abbildung 4.4: Aus einer ehemaligen Fassadenverkleidung entstand ein Terrazzo-Bodenbelag für die erneuerten Innenräume. (Fotos: Marcel Kohler/Eric Rossier)

an Privatpersonen vermittelt wurden. Auch wertvolle Bauteile wie die Steinverkleidungen der alten Fassaden oder die Zahnräder des alten Paternoster-Aufzugs fanden einen neuen Einsatzzweck als Teile von Aussenmöbeln. Gemäss der $\mathrm{CO_2}$ -Bilanzierung des Projekts konnten durch die Wiederverwendung vor Ort und durch Bauteilweiterreichung rund 177 t $\mathrm{CO_2}$ eingespart werden, was 8 % der Gesamtemissionen entspricht.

Ergänzt wurden die Massnahmen zur Wiederverwendung durch energetische Verbesserungen und die Installation von farbigen Photovoltaikmodulen an der Fassade des Turms, um vor Ort Solarstrom produzieren und nutzen zu können. Die Wärmeund Kälteversorgung des Areals übernimmt ab 2025 das Anergienetz «GéniLac».

Was war besonders?

- Die Zusammenarbeit mit lokalen Partnern, welche die Demontage erhaltenswerter Objekte sowie deren Weiterverkauf an Privatpersonen auf der Baustelle übernahmen.
- Die Einrichtung eines geschützten Lagerplatzes auf dem Grundstück, auf dem die für die Wiederverwendung bestimmten Materialien zwischengelagert werden konnten.
- Gestaltungsprinzip «Design from Availability» –
 mit den Materialien arbeiten, die verfügbar sind.
 So dient zum Beispiel wiederverwendeter Asphalt als Trittstufen in den Aussenanlagen. Eine Fassadenverkleidung, die nicht zerstörungsfrei demontiert werden konnte, wurde zu einem Terrazzo-Bodenbelag (Downcycling).


Was sorgte für Zusatzaufwand?

- Herausfordernd war der Umgang mit Garantien –
 nicht alle beteiligten Unternehmen waren bereit,
 diese für wiederverwendete Produkte zu geben.
 Um dem entgegenzuwirken, organisierte das
 BFSA-Team Diskussionsrunden mit den Beteiligten und machte Vorschläge für Tests vor Ort.
 Zudem sorgte man dafür, dass ein ausreichender
 Vorrat an Produkten vorhanden war, die bei einer
 starken Beschädigung als Ersatz dienten.
- Die Planung und die Beschaffung von Materialien verursachten einen hohen Zeitaufwand.
 Hindernisse waren unter anderem Brandschutzund Schallschutznormen oder verlorenes Wissen für bestimmte Techniken. Die Maurerfirma
 hatte beispielsweise seit 30 Jahren keinen
 Terrazzo mehr hergestellt.

Was gelang nicht?

Die Wiederverwendung von Brandschutztüren war nicht möglich, weil an diesen keinerlei Änderungen erfolgen durften – nicht einmal der Wechsel des Türschlosses war gemäss der zuständigen Behörde möglich. Ferner war geplant, die alte Fassadenverkleidung mit dem Steinbrecher auf einer nahegelegenen Baustelle zu zerkleinern. Das zuständige Amt lehnte dies ab mit der Begründung, man dürfe keine Abfälle von einer Baustelle zur anderen transportieren. Anstelle eines Recyclings vor Ort musste das Material mit LKW abtransportiert, 20 km entfernt auf dem Firmengelände der beauftragten Bauunternehmung aufbereitet und wieder zurücktransportiert werden.

5 Materialisierung

5.1 Materialkonzept

Zirkuläres Bauen will endliche Ressourcen möglichst schonen und den Materialbedarf für neue Gebäude generell reduzieren. Deshalb muss beim Entwurf auf effiziente Konstruktionen geachtet werden. Für die Materialisierung an sich sollten unterschiedliche, kreislauffähige und schadstofffreie Baumaterialien und -produkte ausgewählt werden. Wiederverwertbare Baumaterialien sowie Baustoffe mit einem hohen Recyclinganteil sind solchen aus primärer Herstellung zu bevorzugen. Biobasierte Materialien sind in der Regel kreislauffähiger als mineralische Baustoffe und sortenrein verwendete Materialien lassen sich hochwertiger wiederverwenden, beziehungsweise rezyklieren, als Verbundwerkstoffe.

Nebst funktionalen Ansprüchen sind bei der Materialwahl deshalb folgende Auswahlkriterien zu berücksichtigen:

- Dauerhaftigkeit
- Recyclinganteil, künftige Rezyklierbarkeit und Recyclingeffizienz
- Herkunft und Lieferkette
- Auswirkung auf Raumluftqualität und Gesundheit (keine Schad- und Risikostoffe)
- produktespezifischer Treibhausgas-Fussabdruck und Einfluss auf die gesamte Gebäudebilanz
- Planung der Verbindungsmittel und Befestigungspunkte für eine bessere Rückbaubarkeit

Ausserdem sollte eine gebäudebezogene Ressourcendokumentation angelegt werden (siehe Abschnitt «Material- oder Ressourcenpass» in Kapitel 4.2).

Verfügbarkeit, Logistik und Transportwege

Regionale Handelsplattformen und Bauteilbörsen für die Wiederverwendung von Bauteilen sind in Entwicklung. Verschiedene Anbieter in der Schweiz bauen ihren Service von einer Online-Abfrage zum Beratungsangebot für Architekturschaffende und Bauingenieurinnen und -ingenieure aus.

Kurze Lieferketten und eine regionale Wertschöpfung bei Herstellung und Recycling entsprechen den Zielen der Kreislaufwirtschaft. Darauf ist auch die Beschaffung von kreislauffähigen Baumaterialien auszurichten. Je geringer der Treibhausgas-Fussabdruck für die Aufbereitung oder Produktion

von wiederverwendbaren Bauteilen oder rezyklierten Baustoffen ausfällt, umso bedeutender werden Herkunftsort und Transportdistanz.

Für wiederverwendbare Baumaterialien, die demontiert und unverändert wiedereingebaut werden, entfallen mehr als die Hälfte der indirekt erzeugten Treibhausgasemissionen auf den Transport. Anlieferungen sind daher idealerweise kurz zu halten und mithilfe einer Ökobilanzierung abzuwägen. Grundsätzlich bedeutet Wiederverwendung eine lokale Lieferkette, die deutlich kürzere Distanzen überwindet als klassische Baustoffe.

Die Verfügbarkeit von Recyclingbeton ist ein weiterer Sonderfall: Im Vergleich zum herkömmlichen Ortbeton ist eine ökologische Beschaffung auch bei einem zusätzlichen Transportaufwand – in der Regel mit Distanzen bis zu weiteren 30 km – sinnvoll.

5.2 Materialkunde

Mineralische Baustoffe und -produkte

Bei der Beschaffung von mineralischen Baustoffen ist ein möglichst hoher Recyclinganteil einzufordern. Die Herstellung von Beton, Stahl, Aluminium, Glas und Kunststoffprodukten aus Sekundärressourcen, die aus dem Gebäuderückbau oder internen Fabrikationsrückständen gewonnen werden, bleibt energieintensiv. Deshalb ist ihr Treibhausgas-Fussabdruck unabhängig ihrer produktespezifischen Recyclinganteile gross. Reduziert werden kann er durch den Einsatz von erneuerbaren Energieträgern für den Wiederaufbereitungsprozess. Bei gewissen Materialien ist der Recyclingprozess zudem mit einem Downcycling verbunden.

Die beim Bauen am meisten verwendeten Baustoffe wie Beton, Backstein und Stahl sind auch in rezyklierter Form aus ökologischen Gründen nur dort zu verwenden, wo sie eine lange Nutzungsdauer des Bauwerks sicherstellen. Als Alternativen für Tragstrukturen und Gebäudehüllen bieten sich – für gewisse Gebäudetypen – eine Holzbauweise oder der Stampflehmbau an. Für innere Raumtrennwände können Lehmbausteine verwendet werden.

Emissionsreduzierte Produkte

Bei den Bestandteilen von mineralischen Baustoffen wie Beton, Zement oder Ton (Backstein, Ziegel) werden neue Verfahren entwickelt, um den Treib-

hausgas-Fussabdruck der Handelsprodukte zu reduzieren. Am Markt erhältliche klimaoptimierte Betonsorten enthalten in der Regel weniger Klinker im Zement und werden mit einem karbonatisierten Sekundärkies gemischt. Die Deklaration ist jedoch bisher uneinheitlich (siehe Kapitel 5.3 Informationssysteme).

Biobasierte Baumaterialien

Bau- und Werkstoffe aus Holz, Lehm, Stroh, Hanf oder Zellulose stammen aus erneuerbaren, biologisch abbaubaren Rohstoffen. Für ihre Erzeugung und Entsorgung lassen sich in der Regel natürliche Prozesse nutzen. Biobasierte Baumaterialien sind oft auch Nebenprodukte aus der Landwirtschaft oder anderen Wirtschaftssektoren. In diesem Fall müssen sie folgende Bedingungen erfüllen: Sie dürfen nicht mit Fremdstoffen angereichert sein und sollten aus regenerativen Quellen stammen, die auf einer nachhaltigen Bewirtschaftung der natürlichen Ressourcen (Wald, Nutzpflanze) beruhen. Angaben über die Herkunft sind entweder in Produktezertifikaten aufgeführt oder bei Herstellern nachzufragen.

Verbundbaustoffe

Verbundbaustoffe, chemisch verbundene Bauteilsysteme oder auch Holzwerkstoffe sind oft verklebt oder verleimt, was ein sortenreines Recycling nach Ablauf der Nutzungsphase erschwert oder verunmöglicht. Beim Holzbau gilt es deshalb – mit einer Ökobilanzierung – sorgfältig abzuwägen, für welche Strukturen Massivholz respektive Brettschichtholz zu verwenden ist. Ebenso zurückhaltend sind Schutzanstriche für Holzbauteile einzusetzen.

5.3 Informationssysteme

Treibhausgasbilanzierung

Ökologische Lebenszyklusanalysen für Baustoffe liefern wichtige Grundlagen sowohl für konstruktive Entscheide als auch für eine Produkteevaluation. Die in der inländischen Planungsbranche etablierten Berechnungsstandards (SIA 2032) und die einheitlichen Datengrundlagen (KBOB-Ökobilanzdaten) stellen sicher, dass der Materialvergleich bei gleicher Funktion und Nutzungsdauer erfolgt. Auch der Rückbau und die verschiedenen Recyclinganteile sind in diesem Bilanzierungssystem prospektiv einberechnet.

Zu beachten ist, dass ein Baustoffrecycling die indirekte Treibhausgasbilanz nicht zwingend verbessert, aber sich der Ersatz von primären Rohstoffen durch Recyclingprodukte anderweitig positiv auf Ökosysteme auswirkt (Gewässer, Biodiversität usw.). Diesbezüglich liefert die obengenannte Methode ebenso gute Entscheidungsgrundlagen. Die Produktions- und Lieferketten von unterschiedlichen neuwertigen Baumaterialien können bei Bedarf auch mit Umweltbelastungspunkten bewertet werden.

Deklarationsstandards

Die Deklaration von produktespezifischen Treibhausgasemissionen ist staatlich noch nicht geregelt. Teilweise können aktuelle Angaben dazu der Liste «Ökobilanzdaten im Baubereich» von KBOB/ Ecobau/IPB entnommen werden, teilweise informieren Umweltproduktedeklarationen (UPD), auf Englisch Environmental Product Declaration (EPD), über produktespezifische Treibhausgasemissionswerte. Die KBOB-Ökobilanzdaten dienen als anerkannte Grundlage für standardisierte Ökobilanzen, wie sie für die Gebäudelabels Minergie, Minergie-ECO und SNBS verlangt werden respektive zur Berechnung der Zielwerte der SIA-Norm 390/1 Klimapfad angewandt werden. Bisher wurden in den EU-Ländern unterschiedliche Anforderungen an EPDs gestellt. Deswegen fehlt Stand heute die Vergleichbarkeit. Die EU arbeitet in den nächsten Jahren auf eine Vereinheitlichung hin. Die Daten der EPDs sind bisher auch nicht kompatibel mit den KBOB-Ökobilanzdaten. Die Schweiz wird die revidierte EU-Bauprodukteverordnung übernehmen. Dabei sollen die Kompatibilität der Ansätze und die Vergleichbarkeit zwischen den Ökobilanzen von Produkten gewährleistet werden. Wichtig sind einheitliche Hintergrunddaten, die Betrachtung des ganzen Lebenszyklus sowie die Berechnung der relevanten Umweltindikatoren. Der Verein Ecobau bewertet ECO-Produkte mit pauschalen Angaben zur ökologischen Qualität.

BIM und weitere digitale Umsetzungstools

Das zirkuläre Bauen erhöht die Komplexität der Planungsaufgabe, weil zusätzliche Daten (Materialien, Ökobilanzen) erfasst, gesammelt und ausgetauscht werden müssen. Um die Informationsflüsse zu vereinfachen und daraus stufengerechte Entscheidungsgrundlagen abzuleiten, sind digitale

Planungsinstrumente hilfreich. Bei Neubauten sind sie sogar dringend empfohlen. Digitale Gebäudezwillinge, die mit dem Building Information Modelling (BIM) erstellt werden, lassen sich auch für das Datenmanagement beim zirkulären Bauen nutzen. Beispielsweise sind erste Anwendungsversionen des GreenBIM bereits verfügbar, in denen relevante Normen und umfassende Materialdatenbanken hinterlegt sind.

5.4 Praxisbeispiel Maison de l'environnement, Lausanne

Steckbrief				
Objekt	Maison de l'environnement, Lausanne			
Nutzung	Verwaltung			
Baujahr	2017–2021			
Bauherrschaft	Kanton Waadt			
Architektur	Ferrari Architectes Lausanne SA in Part- nerschaft mit JPF Entreprise Générale SA			
Fachplanung Zirkuläres Bauen	-			

Im Nordosten der Stadt Lausanne entstand zwischen 2017 und 2021 ein modernes Bürogebäude für die Umweltschutzdirektion des Kantons Waadt. Das «Maison de l'environnement» ist denn auch als Passivhaus konzipiert – es soll das Engagement der Nutzenden für die Umwelt widerspiegeln.

Den Kern des Gebäudes bilden zwei begrünte Innenhöfe, die als Orte der Begegnung und des Austauschs dienen. Gleichzeitig unterstützen sie die Regulierung des Raumklimas: Die Lüftungsöffnungen an den Seiten und im Dach der Atrien sorgen für einen Kamineffekt und eine natürliche Belüftung. Darüber hinaus versorgen die Innenhöfe die angrenzenden Räume mit Tageslicht und schaffen eine angenehme Atmosphäre.

Die tragende Struktur der Obergeschosse und die Fassaden bestehen aus Holz. Um dessen geringe Wärmespeicherfähigkeit auszugleichen, entschied man sich, die Innenwände des Neubaus aus Stampflehm zu fertigen. Dieser verfügt über eine hohe Speichermasse, die zum thermischen Komfort beiträgt und die Luftfeuchtigkeit reguliert. Für das Untergeschoss kam Recyclingbeton zum Einsatz.

Abbildung 5.1:
Das «Maison de
l'environnement»
ist die neue
Heimat der
Umweltschutzdirektion des
Kantons Waadt.
(Foto: Duccio
Malagamba)

Die Trennwände aus Gipsplatten sind so ausgeführt, dass sich die Raumstruktur an veränderte Bedürfnisse anpassen lässt. Diese Flexibilität erhöht die Lebensdauer des Gebäudes. Die modulare Holzbauweise ermöglicht zudem die Wiederverwendung von Bauteilen am Ende des Lebenszyklus. Durch die verschiedenen Massnahmen konnte die graue Energie des Neubaus auf 80 % des von Minergie-ECO geforderten Grenzwerts gesenkt werden (siehe Säulengrafik). Die Treibhausgasemissionen für die Erstellung belaufen sich auf 10,53 kg CO2eq/m².

Was war besonders?

- Die Nutzenden hatten die Kompetenz, sich während der gesamten Projektentwicklung an mehreren Themen zu beteiligen, beispielsweise der Gestaltung der Aussenanlagen, der Wassernutzung oder der Dachbegrünung.
- Für den Bau wurden, wenn immer möglich, lokale Materialien verwendet. Der Auftraggeber liess eine Studie zur Herkunftsverfolgung durchführen. Diese zeigte, dass 97 % des Holzes und 100 % des Betons aus der Schweiz stammten. Der Grossteil des einheimischen Holzes wurde im Kanton Waadt in Wäldern geschlagen, die nachhaltig bewirtschaftet werden.

Graue Energie

Projektwert: 620'000 MJ/Jahr, Grenzwert: 775'000 MJ/Jahr Nicht erneuerbare Energie in MJ/Jahr

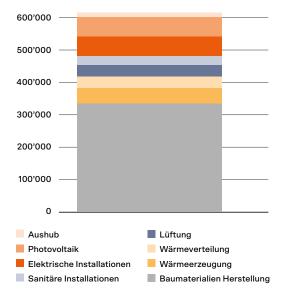
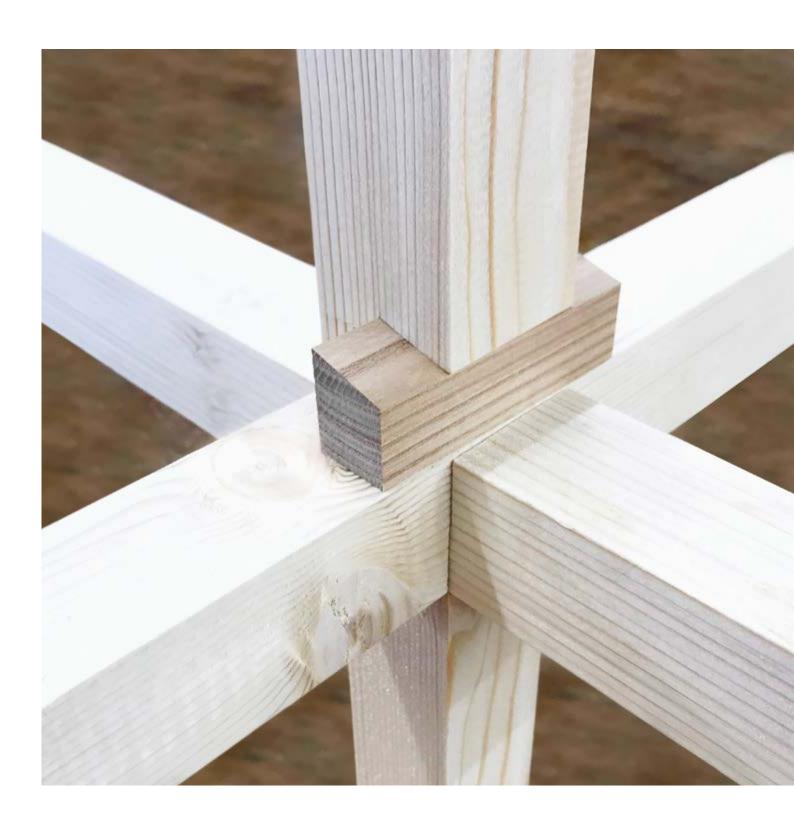


Abbildung 5.3: Berechnungen zur grauen Energie. (Quelle: Weinmann-Energies SA)

Was sorgte für Zusatzaufwand?

Der Auftraggeber musste von der Materialisierung der Innenwände mit Lehm überzeugt werden. Besuche bereits realisierter Bauten halfen, offene Fragen zu klären.


Was gelang nicht?

Ursprünglich war geplant, für die Herstellung der Lehmziegel die vor Ort anfallende Aushuberde zu verwenden. Starke Unwetter zum Zeitpunkt des Aushubs machten diese Idee leider zunichte: Die Erde hätte über mehrere Wochen künstlich getrocknet werden müssen, um sie verwenden zu können. Daher wurde auf Erde anderer Standorte in einem Umkreis von maximal 30 km zurückgegriffen.

Abbildung 5.2: Eines der beiden Atrien, die nicht nur viel Tageslicht ins Gebäude bringen, sondern durch den Kamineffekt und die verbauten Lehmsteine auch das Raumklima positiv beeinflussen. (Foto: Duccio Malagamba)

6 Neubau

Neubauten bieten eine ideale Gelegenheit, die zirkulären Entwurfs- und Baustrategien umfassend anzuwenden und eine gebäudebezogene Ressourcendokumentation anzulegen.

6.1 Gebäudekonzept

Beim Gebäudekonzept sind folgende Aspekte bereits in der Entwurfsphase zu berücksichtigen:

- Langlebigkeit: Die technischen Anforderungen an die Lebensdauer der Gebäudesysteme und Gewerke sind normiert und deshalb für jede Planungsaufgabe im Voraus als Minimum definiert. Ebenso frühzeitig sind weitere Einflüsse auf den Gebäudelebenszyklus abzuschätzen, wie künftige Nutzungsänderungen oder der Anpassungsbedarf an den Klimawandel. So empfiehlt es sich, in einer frühen Planungsphase alternative Nutzungsszenarien oder Sensitivitätsanalysen durchzuführen, um die Anpassungsfähigkeit und Vielseitigkeit eines Gebäudes zu überprüfen.
- Resilienz: Eine Architektur, die sich zeitloser Gestaltungskonzepte bedient, bekräftigt den dauerhaften Wert und erhöht die öffentliche Akzeptanz eines Gebäudes. Gleichzeitig ist sie, im Verbund mit der Technik, auf einen resilienten Betrieb auszulegen. Gebäude sollen angesichts der absehbaren Folgen des Klimawandels bei Bedarf ohne Komfortmängel an Klimaszenarien wie Hitzewellen angepasst werden können.
- Nutzungsflexibilität: Die räumliche Disposition ist für eine Mehrfachnutzung von Flächen auszulegen. Mithilfe von strukturellen, räumlichen und organisatorischen Massnahmen sind verschiedene Nutzungszwecke – über die Zeit oder bezogen auf einzelne Raumeinheiten – zu ermöglichen. Ebenso flächensparend sind suffiziente Grundrissmodelle, die offene Raumeinheiten zum Beispiel für ein Co-Working oder ein gemeinschaftliches Wohnen vorsehen.
- Systemtrennung: Zur Erleichterung von künftigen Nutzungsänderungen, des Unterhalts und des Rückbaus ist die Trennung der verschiedenen Gebäudesysteme und -schichten unverzichtbar. Hierfür sind Bauteile unterschiedlicher Funktion und Lebensdauer jeweils konstruktiv auseinander zu halten und trennbar zu verbinden. Dies stellt sicher, dass Raumeinteilungen unkompliziert verändert oder Bauteile einfacher ausgebaut und wiederverwendet werden können (Abb. 6.1).

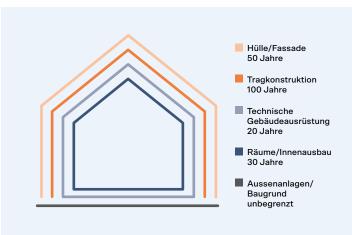


Abbildung 6.1: Schichtenspezifische Veränderungszyklen (Gemäss DGNB nach dem Modell der «shearing layers» nach Stewart Brand)

 Rückbaukonzept: Obwohl neue Gebäude für eine lange Zeit – im besten Fall über drei bis vier Generationen oder länger – erstellt werden sollen, ist der spätere Rückbau vorsorglich vorzubereiten. Für Bauteile mit einer kürzeren Lebensdauer (z. B. Fassade, Innenausbauten, Technik) ist dies noch relevanter. Dafür sollte ein Wiederverwendungs- und Demontagekonzept erstellt werden, das bei Schlüsselübergabe den Betriebsverantwortlichen übergeben wird.

6.2 Tragstruktur

Anpassbare Dimensionierung

Das Tragwerk wird heute schon als langlebiger Gebäudekern konzipiert. Optimierungsbedarf für das zirkuläre Bauen besteht hinsichtlich einer Vereinfachung des strukturellen Aufbaus. Gradlinige vertikale Lastabtragungen reduzieren den Materialbedarf im Vergleich zu einem verwinkelten Gebäudeskelett mit auskragenden Elementen.

Die Dimensionierung der Tragstruktur kann die Flexibilität der Gebäudenutzung wesentlich erhöhen. Die Auslegung von Spannweiten und Geschosshöhen ist auf eine flexible Nutzung von Räumen und Grundrissen abzustimmen. Es ist jedoch zu beachten, dass eine flexibel nutzbare Tragstruktur nicht immer dem Optimum an Materialeffizienz entspricht und daher erst langfristig Wirkung auf einen schonenden Umgang mit Ressourcen bewirkt.

6.3 Konstruktion

Trennbare Bauteile

Die Gebäudekonstruktion setzt sich aus verschiedenen Systemen – Tragwerk, Gebäudehülle, Innenausbau – und Gewerken zusammen, die auf unterschiedliche Weise miteinander verbunden sind. Bei Neubauten ist deshalb im Voraus zu planen, wie die Instandsetzung während der Nutzungsphase respektive eine Demontage am Nutzungsende vereinfacht werden kann. Die Anforderungen an die Planung von Neubauten steigen, weil auch die

Demontierbarkeit und sortenreine Rückbaubarkeit der Konstruktionselemente von Anfang an mitzudenken sind.

Reversible Verbindungen

Optimale Voraussetzungen für das «Design for Disassembly» schaffen reversible Bauteilverbindungen, die in der Regel mechanisch ausgeführt werden. Ein geeignetes Anschlussprinzip ist: «Schrauben oder Fügen statt Kleben.» Einfach rückbaubare Verbindungen verbessern die Kreislauffähigkeit einer modularen Bauweise respektive einer Ausführung mit hohem Vorfertigungsgrad. Zu beachten ist auch,

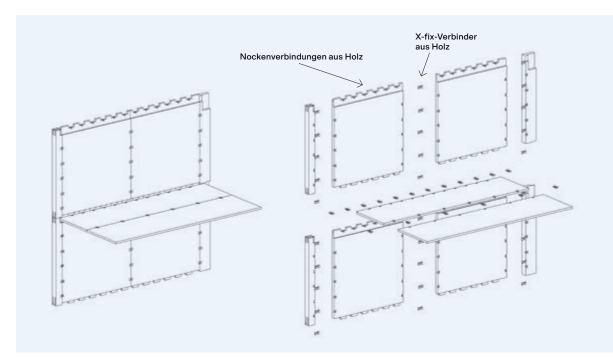


Abbildung 6.3: Reversible Verbindungen im «Haus des Holzes». (Quelle: PIRMIN JUNG Schweiz AG)

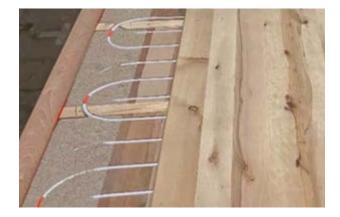


Abbildung 6.2: Bodenaufbau in den Bürogeschossen des «Haus des Holzes». Die Rohre des Heiz- und Kühlsystems sind nicht eingegossen, sondern lassen sich einfach wieder trennen. (Quelle: PIRMIN JUNG Schweiz AG)

dass die Verbindungsstellen jeweils gut zugänglich bleiben. Deshalb ist für die Gebäudetechnik zu beachten: Eine Vollintegration von Kanälen und Leitungen in die Rohbaustruktur verhindert das spätere Trennen von unterschiedlichen Baumaterialien und ist möglichst zu vermeiden.

Dauerhafter Schutz

Auf konstruktiver Ebene sind Massnahmen für den Schutz von exponierten Bauteilen vorzusehen, weil dadurch die Langlebigkeit von Materialien mit dem geringstmöglichen Aufwand sichergestellt wird. Ein Beispiel dafür ist der Witterungsschutz bei Aussenfassaden: Dabei sind bauliche Massnahmen der Behandlung mit chemischen Schutzmitteln vorzuziehen.

6.4 Materialisierung

Geringer Ressourcenbedarf

Die Materialisierung ist bei Neubauten und Erneuerungen ein wichtiger Schritt, um den Kreislauf beim Bauen schliessen zu können. Der Fokus liegt auf Baumaterialien mit einem niedrigen Treibhausgas-Fussabdruck, weshalb primär wiederverwendete Bauteile und biobasierte Baustoffe in Frage kommen. Kommen aufgrund statischer Anforderungen mineralische Materialien zum Einsatz, sind langle-

bige und möglichst ressourcenschonende Bauprodukte oder Materialien zu verwenden (siehe Kapitel 5 «Materialisierung»).

Sortenreine, rezyklierbare Materialien

Materialunabhängig ist eine sortenreine Verwendung wichtig. Bleiben die Oberflächen unbehandelt, können sie einfacher rezykliert werden. Bei der Ausschreibung von Bauprodukten sind Vorgaben für eine Rücknahme von Rückbaumaterial zu berücksichtigen. Immer mehr Hersteller organisieren heute schon eigene Sammel- und Recyclingsysteme (siehe Kapitel 7 «Rückbau»).

6.5 Praxisbeispiel Haus des Holzes, Sursee

Steckbrief

Objekt	Haus des Holzes, Sursee
Nutzung	Verwaltung und Büro, Gewerbe, Wohnen
Baujahr	Fertigstellung 2022
Bauherrschaft	Pirmin Jung Immobilien AG, Sursee
Architektur	Marc Syfrig Architekten ETH SIA BSA, Luzern
Fachplanung Zirkuläres Bauen	Pirmin Jung Schweiz AG, Sursee

Abbildung 6.4: Das «Haus des Holzes» ist fast vollständig mit lokalem Holz erbaut. (Foto: Marcoleu GmbH)

Abbildung 6.5: Um die Trennbarkeit der Bauteile sicherzustellen, setzten die Holzbauplaner auf Steck- und Schraubverbindungen. (Foto: Tschopp Holzbau AG)

Seit Herbst 2022 steht in Sursee das sechsgeschossige «Haus des Holzes». Der neue Firmensitz der Pirmin Jung Schweiz AG beherbergt Büros, Gewerbe und Wohnungen. Er ist nach den Standards Nachhaltiges Bauen Schweiz (SNBS) Platin und Minergie-P-ECO zertifiziert sowie mit dem Label Schweizer Holz ausgezeichnet.

Mit dem Neubau wollte die Bauherrschaft ein Vorzeigeprojekt für digitales, klimagerechtes und zirkuläres Planen und Bauen realisieren. Das in Holzsystembauweise erstellte Gebäude integriert neueste Techniken für eine hohe Energie- und Ressourceneffizienz, geplant wurde nach der BIM-Methode. Fast alle Bauteile – auch Treppenhaus, Liftschacht und teilweise Unterlagsböden – sind aus einheimischem Holz gefertigt. Die Wände sind als beidseitig beplankte und ausgedämmte Holzrahmen konzipiert und wo nötig mit Brettsperrholzelementen ausgesteift. Die Decken der Büros sind als Rippendecken, jene der Wohnungen als Brettstapeldecken ausgeführt. Gedämmt wird mit einer Mineralfaserdämmung.

Sämtliche Bauteile wurden mit geschraubten oder gesteckten statt mit genagelten, geklammerten oder geklebten Verbindungen konstruiert, sodass sie später einfach getrennt werden können.

Anhand von Mockups liess sich dieses «Design for Disassembly» real prüfen. Eine konsequente Systemtrennung ermöglicht zudem eine flexible Gebäudenutzung und eine lange Lebensdauer sowie eine fachgerechte Separierung der Materialien beim Rückbau.

Der $\mathrm{CO_2}$ -Fussabdruck des Neubaus beträgt rund 2200 t – etwa 1000 t weniger als ein in Massivbauweise erstelltes Gebäude. In den rund 1600 m³ Holz, die verbaut wurden, sind zudem gut 1600 t Kohlenstoff gespeichert. Die Treibhausgasemissionen in der Erstellung betragen 11,11 kg $\mathrm{CO_2eq/m^2}$.

Was war besonders?

- Der Fokus lag beim digitalen Planen und Bauen nach der BIM-Methode sowie bei der umfassenden Nachhaltigkeit über die Bereiche Gesellschaft, Wirtschaft und Klimaschutz.
- Die Wahl der Projektpartner erfolgte nicht aus wirtschaftlichen Überlegungen, sondern unter dem Aspekt, was sie zum Projekterfolg beitragen können – insbesondere, wie sie das digitale Planen und Bauen in ihrem eigenen Fachbereich bei der Arbeit am Haus des Holzes weiter voranbringen.
- Die modellbasierte Planung ermöglichte, die eingesetzten Materialien und die Prozesse laufend zu messen und zu kontrollieren. Diese Transparenz brachte Mehrwerte in der Kommunikation.

Was waren die grössten Herausforderungen?

Durch die Arbeit mit einem digitalen Modell und die konsequente Systemtrennung mussten viele Prozesse neu gedacht werden. Doch weil man im eigenen Unternehmen auf ein interdisziplinäres Team zählen konnte, gelang es, rasch neue Lösungen zu finden.

Unüberwindbare Hürden gibt es laut dem Projektteam keine: Zirkuläres Bauen ist lösbar, wenn man offen ist und die entsprechenden Fachpersonen früh miteinbezieht.

Was sorgte für Zusatzaufwand?

Das Implementieren der neuen Prozesse und das digitale Planen haben zu Mehrkosten geführt. Doch haben alle Beteiligten mit diesem Projekt bewusst Neuland betreten, wofür sie höhere Kosten in Kauf nahmen.

7 Rückbau

7.1 Gebäude als Materiallager

Die Kreislaufwirtschaft betrachtet Gebäude als temporäre Materiallager. Das zu ihrer Erstellung verwendete Material wird in der Idealvorstellung für eine bestimmte Zeit aus der Natur entnommen und am Ende der Nutzungsdauer eines Gebäudes wieder in den Materialkreislauf zurückgegeben, entweder in einen weiteren Einsatz in einem Bauwerk oder zurück an die Natur. Soll das Material wiederverwendet werden, dann möglichst bei gleichbleibender Qualität. Heutige Gebäude sind noch nicht so gebaut und deren Bauteile nicht ausreichend dokumentiert, dass sie einfach wieder in ihre Einzelteile respektive Bauteile zerlegt werden können. Meist werden sie am Ende ihrer Nutzungsdauer abgerissen und lassen sich nicht oder nur schwer zurück in den natürlichen Kreislauf führen.

Selektiver Rückbau

Beim selektiven Rückbau werden die Bestandteile eines Bauwerks so voneinander getrennt, dass ihre Eigenschaften und Funktionen so weit wie möglich erhalten bleiben. Ziel ist es, einen hohen Anteil an wiederverwendbaren Bauteilen zu erhalten, in zweiter Priorität folgt das hochwertige Wiederverwerten des unbelasteten Bauschutts. Möglichst wenig Material soll thermisch verwertet oder deponiert werden. Das bedeutet, dass das Gebäude schichtweise demontiert werden muss, was eine sorgfältige Planung und eine fachkundige Ausführung des Rückbaus erfordert. Detaillierte Informationen und Anwendungsbeispiele finden sich in der Broschüre «Selektiver Rückbau - Rückbaubare Konstruktion», die im Auftrag des Bundesamts für Umwelt erarbeitet wurde.

Schadstoffanalyse

Bei älteren Gebäuden muss mit Schadstoffen gerechnet werden. Deshalb ist eine Schadstoffanalyse bei bewilligungspflichtigen Bauvorhaben für Bestandsbauen mit Baujahr vor 1990 gesetzlich vorgeschrieben. Sind Schadstoffe vorhanden oder fallen mehr als 200 m³ Bauabfälle an (inkl. Aushubmaterial), ist ein Entsorgungskonzept nötig. Schadstoffhaltige Bauteile oder Materialien müssen vor dem eigentlichen Rückbau entfernt und von den übrigen Abfällen getrennt entsorgt werden.

Die Gebäudestandards Minergie-ECO und SNBS fordern für alle Modernisierungen, Erneuerungen und Rückbauvorhaben an Bauten mit Baujahr vor 1990 einen Gebäudecheck auf Schadstoffe.

Material- und Bauteilinventare

Ein wichtiges Element des selektiven Rückbaus ist neben der Schadstoffanalyse eine Bestandesaufnahme der Bauteile und -materialien, die entnommen werden sollen. Dafür gibt es heute noch kein standardisiertes Vorgehen, beispielweise in Form von Material- oder Bauteilpässen. Einen ersten Ansatz liefert die <u>DIN-Spezifikation 91484</u> «Verfahren zur Erfassung von Bauprodukten als Grundlage für Bewertungen des Anschlussnutzungspotenzials vor Abbruch- und Renovierungsarbeiten». Sie kann als Leitfaden für die Erstellung sogenannter Pre-Demolition-Audits, also Ressourcen- oder Bauteilinventaren von Bestandsbauten, genutzt werden.

Ein einfaches Hilfsmittel, um abzuschätzen, wie viel der Baumaterialien und Baustoffe sich für die Wiederverwendung und in zweiter Priorität fürs Recycling eignen, ist die Potenzialanalyse «Zirkuläres Bauen» von Ecobau. Sie bietet Vorlagen für die Erfassung von Bauteilen und Bauprodukten. Der zugehörige Leitfaden erläutert das Vorgehen.

Auf Basis der erfassten Inventare können anschliessend Konzepte für Wiederverwendung und Recycling erstellt werden. Grundsätzlich ist die Wiederverwendung dem energieintensiven Recycling vorzuziehen, wie das auch die Norm SIA 430 «Vermeidung und Entsorgung von Bauabfällen» seit ihrer Revision 2023 vorsieht. Dies gilt sowohl für umfassende Rückbauvorhaben als auch für Erneuerungen oder Instandsetzungen.

7.2 Wiederverwendung

Das Wiederverwendungskonzept legt fest,

- welche Bauteile und Materialien sich für die Wiederverwendung eignen,
- wie sie demontiert,
- wo sie gelagert und
- über welche Kanäle sie weitervermittelt werden.

Ebenso regelt es die Zuständigkeiten der unterschiedlichen Beteiligten und die Aufteilung der Kosten.

Der genaue Zeitpunkt der Demontage, deren Ablauf sowie der Transport und die Lagerung der Bauteile ist früh zu klären. Die Bauteile müssen individuell gekennzeichnet und vor Beschädigung geschützt werden. Je nach Zustand werden sie noch vor Ort gereinigt, aufbereitet oder repariert. Aufwendigere Aufbereitungsarbeiten finden in der Regel ausserhalb der Rückbaustelle bei geeigneten Fachbetrieben statt. Sämtliche Bauteile werden mit einem Bauteilpass dokumentiert.

Wichtig ist, dass genügend Zeit für die Inventarisierung, Vermittlung und Demontage der Bauteile eingeplant wird und auf der Rückbaustelle ein Sammelplatz vorhanden ist.

Detaillierte Informationen zum Vorgehen finden sich im Merkblatt «Wiederverwendung von Bauteilen».

Abbildung 7.3: Stützen, Träger und Deckenelemente des ehemaligen Parkhauses Lysbüchel in Basel werden elementweise rückgebaut und sollen danach in zwei Neubauten wiederverwendet werden. (Bild: Muriel Mangold, Immobilien Basel-Stadt)

7.3 Materialrückgewinnung

Um eine hohe Qualität von Recyclingbaustoffen zu erreichen, sollen die Abfälle bereits beim Rückbau in stoffspezifischen Mulden sortiert werden. Fehlt der Platz für die stoffspezifische Trennung auf der Baustelle, können die Abfälle auch in einer geeigneten Anlage im Recyclingwerk getrennt werden. Dies führt aber in der Regel zu schlechter verwertbaren Fraktionen, als wenn die Trennung während des Rückbaus erfolgt.

Ziel des zirkulären Bauens ist, einen möglichst hohen Anteil des nicht wiederverwendbaren Rückbaumaterials zu Sekundärrohstoff zu verarbeiten. Um dies zu erreichen, kann die Bauherrschaft bei der Ausschreibung des Rückbaus eine hohe Verwertungsrate einfordern. Dies betrifft nicht nur die üblichen Abfallfraktionen wie Metalle oder mineralische Baustoffe. Es gibt heute immer mehr Rücknahmesysteme von Herstellern für Baustoffe wie beispielsweise PVC-Bodenbeläge oder -Dachbahnen, Gipskarton- und Vollgipsplatten oder Dämmstoffe. Weitere Informationen hierzu bieten beispielsweise die ecoBKP-Merkblätter von Ecobau. Unter der Position «112 Abbrüche / Rückbau / Entsorgung» sind die Entsorgungswege für die einzelnen Baustoffe aufgelistet. Vorlagen für die Ausschreibung finden sich im «ecoDevis 117: Abbrüche und Demontagen».

Recyclinganteile verschiedener Baustoffe

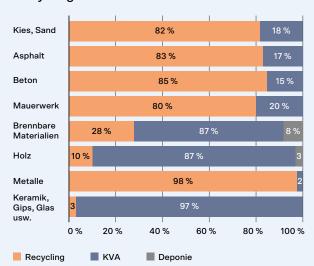


Abbildung 7.1: Während mineralische Baustoffe in der Schweiz heute bereits weitgehend rezykliert werden, besteht bei brennbaren Materialien, beim Holz sowie bei Keramik, Gips und Glas noch ein grosses Recyclingpotenzial. (Grafik: Empa, 2016)

7 Rückbau

Abbildung 7.4: Die Unit «UMAR» befindet sich auf der mittleren Plattform. Gut zu erkennen sind die wiederverwendeten Kupferplatten unter und über den Fensterflächen: Die unterschiedlichen Farbtöne ergeben sich durch die Oxidation. (Foto: Zooey Braun, Stuttgart)

7.4 Praxisbeispiel Nest-Unit Urban Mining and Recycling (UMAR), Dübendorf

Steckbrief

Objekt	Urban Mining & Recycling (UMAR), Dübendorf
Nutzung	Wohnen
Baujahr	2018
Bauherrschaft	Empa (NEST-Plattform)
Architektur	Werner Sobek, Dirk E. Hebel und Felix Heisel
Fachplanung Zirkuläres Bauen	Werner Sobek, Dirk E. Hebel und Felix Heisel

Die Empa betreibt in Dübendorf seit einigen Jahren die Forschungsplattform «NEST», um innovative Ansätze für die Bauwirtschaft in der Praxis testen zu können. Eines der Projekte ist die Wohneinheit «Urban Mining & Recycling» (UMAR). Sie wurde unter dem Leitgedanken konzipiert, dass sich alle eingesetzten Ressourcen vollständig wiederverwenden, wiederverwerten oder kompostieren lassen. Das Ziel war, ein komplett kreislauffähiges Gebäude zu erstellen, das mit einer Fläche von knapp 130 m² über mehrere Jahre als Wohnung für jeweils zwei Studierende dient.

Die tragende Struktur und Teile der Fassade von UMAR bestehen aus Holz. Es ist unbehandelt, damit es kompostierbar bleibt. Den nötigen Schutz erhält das Holz durch konstruktive Massnahmen wie aufmontierte Kupferplatten, die von einem Hotel in Österreich stammen. Die Farbveränderungen durch die Oxidierung machen die Platten zu einem gestalterischen Element. Die Holzmodule wurden nicht verklebt, sondern gefügt und verschraubt. Mit diesen Verbindungstechniken bleibt das Material sortenrein trennbar.

Trockenbauplatten aus Lehm und Hanffasern bilden die Innenwände, während die Wohnzimmertrennwand aus einem Plattenwerkstoff aus geschredderten und komprimierten Getränkekartons besteht. Küchenabdeckungen und Duschkabinen sind aus Altglas gefertigt, für die wasserabweisende Wandverkleidung nutzte man rezykliertes Polyethylen von Verschlussdeckeln und Schneidplatten. Für die Dämmung wiederum kommt zerkleinertes Baumwollgewebe von ausrangierten Jeans zum Einsatz.

Gemäss den Berechnungen des Projektteams erreicht UMAR eine Kreislauffähigkeit von 96 %, was für einen Neubau ein weltweit unerreichter Wert ist. Die Kosten lagen zum Zeitpunkt der Erstellung 12 bis 15 % über denen einer konventionellen Bauweise – aufgrund der gestiegenen Rohstoff- und Materialpreise könnte diese Differenz heute bereits wettgemacht sein. Zudem war das Projekt explizit nicht auf Kostenparität ausgelegt, sondern auf eine maximale Kreislauffähigkeit.

Was war besonders?

Um beim Rückbau Material für neue Gebäude entnehmen zu können und Abfälle zu vermeiden, müssen die verbauten Ressourcen sortenrein trennbar sein. So sind zum Beispiel die Fensterscheiben mit einer Trockendichtung statt mit Silikon versehen und die Installationsrohre für die Wasserleitungen sind verschraubt statt verschweisst.

Vorbildcharakter hat ferner die Vorfertigung der einzelnen Module im Werk. Sie ermöglicht die Installation der gesamten Gebäudeeinheit auf der Baustelle innerhalb von nur drei Tagen. Diese extrem kurze Realisierungszeit illustriert das Potenzial der industriellen Bauweise.

Mit UMAR wollten die Verantwortlichen zeigen, dass zirkuläres Bauen keine Zukunftsmusik ist, sondern sich schon heute umsetzen lässt. Das Projekt belegt zudem, dass viele Massnahmen ohne Mehrkosten umsetzbar sind. Die Empa schätzt, dass heute bereits eine Kreislauffähigkeit von 50 % kostenneutral erreicht werden kann.

Die eingesetzten Materialien und Produkte werden im Eingangsbereich von UMAR in einer Materialbibliothek präsentiert. Sie umfasst zum Beispiel Datenblätter mit Herstellerinformationen und relevante Spezifikationen. <u>Online-Version der Materialbibliothek</u>

Was sorgte für Zusatzaufwand?

Es war viel Recherchearbeit nötig, um die geeigneten Materialien zu finden. Auch innovative Bauweisen wie die Abdichtung der Fenster mit einer Trockendichtung benötigten mehr Planungsaufwand als konventionelle Lösungen. Aber: Mit jedem

Abbildung 7.5: Der mobile Raumteiler besteht aus rezyklierten Ziegelsteinen, die mörtelfrei in einen Metallrechen aufgefädelt sind. (Foto: Zooey Braun, Stuttgart)

Projekt steigt das Know-how und sinkt der Aufwand für das nächste zirkuläre Gebäude, denn auf dem bereits Erprobten lässt sich aufbauen.

Was gelang nicht?

Die Verantwortlichen konnten alles umsetzen, was sie sich vorgenommen hatten. Die Wohnqualität überzeugt, die Studierenden gaben bisher ausschliesslich positives Feedback. Nicht kreislauffähig sind lediglich die Haushaltsgeräte, die man bei der Bilanzierung dem Gebäude zurechnete, sowie die Dämmung der Rohrleitungen. Dort fand man auf dem Markt keine Alternative zum heute gängigen Verkleben der mineralischen Dämmung mit einer Alufolie – eine Lösung, die leider nicht kreislauffähig ist.

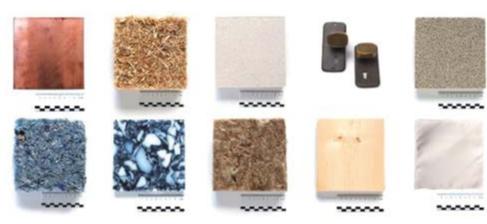
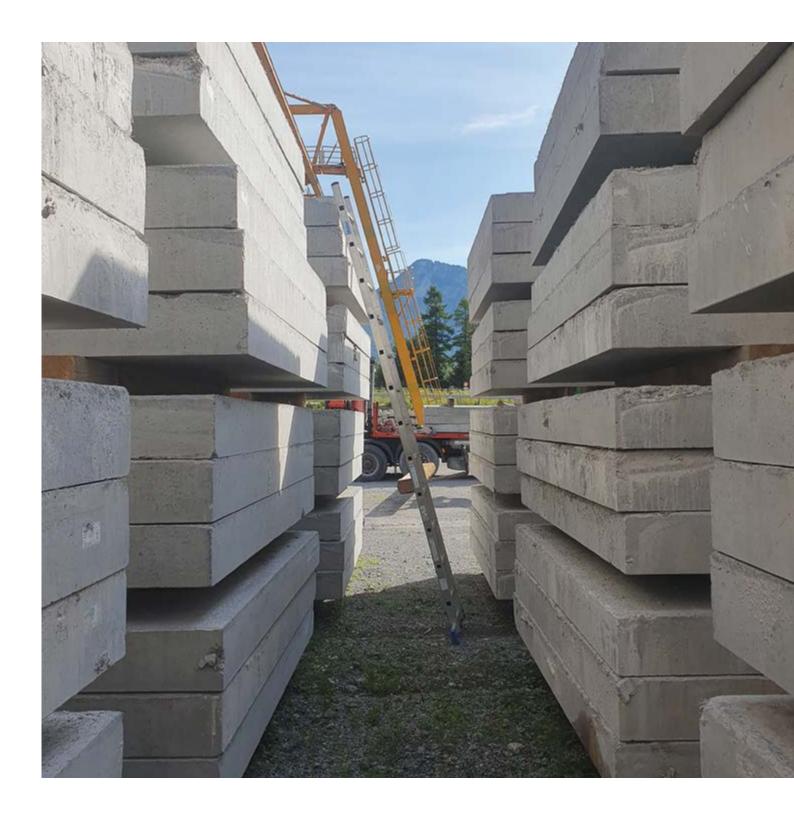



Abbildung 7.6: Die eingesetzten Materialien und Produkte werden im Eingangsbereich von UMAR in einer Materialbibliothek präsentiert. (Foto: René Müller)

8 Rahmenbedingungen

Im Umweltschutzgesetz besteht der Grundsatz, dass Abfälle, wenn möglich, vermieden oder verwertet und so umweltverträglich wie möglich entsorgt werden sollen. In der Abfallverordnung (VVEA) wird dies für verschiedene Abfallarten konkretisiert. So schreibt sie beispielsweise die Verwertung von mineralischen Abfällen aus dem Abbruch von Bauwerken vor. Davon abgesehen beruhen die meisten Massnahmen zur Förderung der Kreislaufwirtschaft und des zirkulären Bauens bisher noch auf freiwilliger Basis. Es sind jedoch rechtliche Entwicklungen im Gange, sowohl in der Schweiz als auch auf europäischer Ebene.

8.1 Rechtlicher Rahmen

Umweltschutzgesetz

Im März 2024 wurde basierend auf der parlamentarischen Initiative «Schweizer Kreislaufwirtschaft stärken» vom Parlament verschiedene Anpassungen an den gesetzlichen Rahmenbedingungen verabschiedet. Die Revision des Umweltschutzgesetzes (USG), des Energiegesetzes (EnG) und des Bundesgesetzes über das öffentliche Beschaffungswesen (BöB) betrifft verschiedenste Bereiche. Unter anderem sieht das Anfang 2025 in Kraft gesetzte revidierte USG vor, dass der Bundesrat Vorgaben zum ressourcenschonenden Bauen, wie beispielsweise Vorschriften zur Wiederverwendung von Bauteilen, zum Einsatz von umweltschonenden oder rezyklierten Baustoffen sowie zur Rückbaubarkeit von Bauwerken erlassen kann. Der Bund wird zudem beauftragt, bei seinen eigenen Bauwerken eine Vorbildrolle einzunehmen. In einer Verwertungshierarchie wird weiter konkretisiert, dass die Wiederverwendung und stoffliche Verwertung von Abfällen der energetischen Verwertung vorzuziehen sind. Die Umsetzung der Gesetzesrevision auf Verordnungsstufe soll gestaffelt über die nächsten Jahre erfolgen.

Energiegesetz: Grenzwerte für graue Energie

Das Anfang 2025 in Kraft gesetzte revidierte eidgenössische Energiegesetz (EnG) verpflichtet die Kantone dazu, Grenzwerte für die graue Energie bei der Erstellung von Neubauten und bei wesentlichen Erneuerungen bestehender Gebäude vorzuschreiben. Dadurch soll die Nachfrage nach Baumaterial mit tiefer grauer Energie gefördert und eine ressourcenschonende Bauweise unterstützt werden.

Die Revision der Mustervorschriften der Kantone im Energiebereich (MuKEn) greift diese Vorgabe des Energiegesetzes bereits auf. Die MuKEn 2025 enthalten im Basismodul Grenzwerte für die graue Energie, respektive die erstellungsbedingten Treibhausgasemissionen. Wird dieser Vorschlag durch die Energiedirektorenkonferenz (EnDK) angenommen, ist es an den Kantonen, die Grenzwerte über die kantonalen Gesetzgebungen umzusetzen.

Bauproduktegesetzgebung

Die im November 2024 angenommene Revision der Bauprodukteverordnung (Construction Products Regulation, CPR) aktualisiert die bestehenden EU-Vorschriften in diesem Bereich und bietet die Möglichkeit, die Normung an neue technische Entwicklungen anzupassen. Durch digitale Produktpässe sollen Verbraucherinnen und Verbraucher besser informiert und ökologische Entscheidungen erleichtert werden. Die neue Verordnung soll auch die Annahme neuer Normen erleichtern und die EU-Kommission ermächtigen, unter bestimmten Bedingungen gemeinsame Spezifikationen zu erlassen.

Die Schweizer Bauproduktegesetzgebung setzt wie die CPR beim Inverkehrbringen der Baumaterialien an und steht in engem Zusammenhang zu dieser. Durch das bilaterale Abkommen mit der EU über die gegenseitige Anerkennung von Konformitätsbewertungen (Mutual Recognition Agreement, MRA) wird für die Schweiz im Bauproduktesektor der hindernisfreie Zugang zum europäischen Binnenmarkt möglich. Um die Äquivalenz mit der CPR weiterhin zu gewährleisten, wird die Schweizer Bauproduktegesetzgebung revidiert werden.

Das revidierte Umweltschutzgesetz gibt dem Bundesrat die Kompetenz, Anforderungen an die Errichtung von Bauwerken zu stellen und nicht allein an das Inverkehrbringen von Bauprodukten. Die möglichen Anforderungen haben somit keine Auswirkungen auf die Äquivalenz der Schweizer Bauproduktegesetzgebung mit der CPR der EU.

8.2 Normen

Norm SIA 390/1 «Klimapfad – Treibhausgas- und Energiebilanz von Gebäuden»

Die Norm erfasst die Treibhausgasemissionen von Gebäuden über den gesamten Lebenszyklus und definiert dafür nutzungsabhängige Grenz- und Ziel-

werte für Erstellung und Betrieb eines Gebäudes. Die Norm löst das Merkblatt SIA 2040 SIA-Effizienzpfad Energie ab und ist seit Februar 2025 gültig.

Norm SIA 430:2023 «Vermeidung und Entsorgung von Bauabfällen»

Die Norm beschreibt, welche Massnahmen in den jeweiligen SIA-Phasen notwendig sind, um einen nachhaltigen Umgang mit Baustoffen zu gewährleisten.

Merkblatt SIA 2032:2020 «Graue Energie – Ökobilanzierung für die Erstellung von Gebäuden» Das Merkblatt bildet die Grundlage für die pla-

nungsgerechte Bewertungs- und Berechnungs-Methode einer Ökobilanz von Gebäuden.

ISO-Normen

Mit der ISO 59000-Normenfamilie hat die Internationale Organisation für Normung (ISO) eine neue Normenreihe veröffentlicht, die den Übergang zur Kreislaufwirtschaft beschleunigen soll. Die Normen beinhalten erstmals <u>internationale Definitionen und Regeln für die Kreislaufwirtschaft.</u>

8.3 Anforderungen aus Gebäudestandards und -labels

Viele Gebäudelabels decken punktuelle Anforderungen der Kreislaufwirtschaft ab. Sie geben Planerinnen und Planern wichtige Anhaltspunkte, worauf sie beim Entwerfen und Planen eines zirkulären Gebäudes achten müssen. Neben den unten aufgeführten Schweizer Labels stellen auch die internationalen Standards DGNB, BREEAM und LEED Anforderungen an die Zirkularität von Gebäuden.

Minergie

In sämtlichen Minergie-Standards sind seit 2023 objektspezifische Grenzwerte für die grauen Treibhausgasemissionen für Neubauten aller Gebäudekategorien festgelegt. Die Berechnung der Emissionen erfolgt methodisch identisch wie bei Minergie-ECO und künftig der MuKEn. Im Unterschied zum Zusatz ECO sind die Grenzwerte weniger streng definiert, um Breitenwirkung zu erzielen und allen Standorten gerecht zu werden. Typische Grenzwerte für ein Mehrfamilienhaus sind 13 kg CO_2 eq/m², wobei die Emissionen für PV-Anlagen

und Erdsonden dazugeschlagen werden dürfen. Die Grenzwerte werden im Sinne eines Absenkpfads sukzessive verschärft.

Minergie-ECO

Der Zusatz ECO erweitert die Minergie-Baustandards um eine zirkuläre und klimafreundliche Bauweise und steht für ein gesundes Innenraumklima. Er verlangt für die graue Energie und die Treibhausgasemissionen bei der Erstellung eine Bilanzierung und legt zwei Grenzwerte fest: Den Grenzwert 1, der bei einem Mehrfamilienhaus typischerweise bei rund 10,5 CO₂eq /m² liegt, und den Grenzwert 2, der etwas höher angesetzt ist und bei typischerweise knapp 13 CO₂eq /m² liegt. Der ökologische Restwert eines Gebäudes bei einem allfälligen Rückbau wird mitberechnet und mitbewertet. Einige Materialeigenschaften, wie der Einsatz von lokalen Ressourcen oder zertifizierten ECO-Produkten, werden separat im Vorgabenkatalog abgefragt. Der Standard umfasst zudem Vorgaben zu Nutzungsflexibilität, Wiederverwendung, Klimaschutz, Kreislaufwirtschaft beziehungsweise Rückbaufähigkeit und Wiederaufbereitung. Er wird kontinuierlich weiterentwickelt und bietet Planenden sowie Bauherrschaften Spielraum, individuelle Schwerpunkte zu setzen.

Standard Nachhaltiges Bauen Schweiz

Der Standard Nachhaltiges Bauen Schweiz für den Hochbau (SNBS-Hochbau) behandelt die Kreislaufwirtschaft als sogenannt transversales Thema, das von verschiedenen Kriterien abgedeckt wird. Das fängt bereits früh im Projekt an, bei Kriterien wie «Ziele und Pflichtenheft» (111) sowie «Städtebau und Architektur» (112). Das Kriterium 213 «Wiederverwendung und Systemtrennung» bewertet die zerstörungsfreie Rückbaubarkeit (Design for Disassembly), die Zugänglichkeit der Gebäudetechnik, Wiederverwendung von Gebäudeelementen und die Erstellung einer Materialdokumentation. Indem der SNBS die graue Energie und die Treibhausgasemissionen bei der Erstellung berücksichtigt, belohnt er Zirkularität generell. So gibt es beim Kriterium «Treibhausgasemissionen Erstellung» (311) einen Punkteabzug in der Bewertung, wenn ein bestehendes Bauwerk vor Erreichen der 60-jährigen Nutzungsdauer abgebrochen wird. Weitere Kriterien, die zirkuläre Projekte zumindest mittelbar begünstigen, sind «Lebenszykluskosten» (211), «Nutzungsflexibilität und -variabilität» (223), «Ökologische Baustoffe» (332) und «Wasser» (342). Ein Grossteil dieser Kriterien entspricht den ECO-Kriterien.

9 Weiterführende Informationen

Eine Sammlung von weiterführender Literatur, Webseiten und Planungsinstrumenten findet sich auf enbau.ch/zirkulaeres-bauen.

9.1 Weitere Leitfäden

«Zirkulär Bauen: Leitfaden für Investoren und Bauherrschaften» von EnergieSchweiz

Wiederverwendung von Bauteilen: Rechtlicher Rahmen. ZHAW, Zirkular GmbH, 2024

Charta kreislauforientiertes Bauen

Leitfaden «Zirkularität messbar machen». Verein C33

9.2 Anlaufstellen

Verein Ecobau

Verein der Hochbauämter von Bund, Kantonen und Städten, die das gesunde, ökologische und nachhaltige Bauen in der Schweiz als Standard etablieren wollen. ecobau.ch

Verein Cirkla

Verband von Akteurinnen und Akteuren im Bereich Wiederverwendung (Re-use). cirkla.ch

Verein C33 – Schweizer Koordinationsstelle für das zirkuläre Bauen

Neutrale Anlaufstelle der Kreislaufwirtschaft im Schweizer Bauwesen.

circularconstructioncatalyst.ch

Verein Circular Economy Switzerland

Koordinations- und Austauschplattform zur Kreislaufwirtschaft. <u>circular-economy-switzerland.ch</u>

9.3 Aus- und Weiterbildung

CAS Zirkuläres Bauen

Die berufsbegleitende Weiterbildung wird durch EN Bau zusammen mit der ETH Zürich, SIA inForm und Zirkular GmbH durchgeführt. enbau.ch/zirkulaeres-bauen

Kurs «Zirkuläres Entwerfen und Realisieren»

Eintägiger Kurs von Ecobau und SIA inForm: ecobau-zirkulaeres-entwerfen.events.sia.ch

Zirkuläres Bauen in der Berufslehre

Verschiedene Kurse zum zirkulären Bauen für Lernende und Lehrpersonen der Raum- und Bauplanung: <u>future-perfect.ch/zirkulaeres-bauen</u>

Bildquellen:

Philip Heckhausen (Seite 1)

baubüro in situ, Foto: Martin Zeller (Seite 4, 7, 11, 22)

baubüro in situ, Fassadenplan (Seite 8)

Zirkular GmbH (Seite 9)

Rita Palanikumar, 13Photo (Seite 14)

Erneuerung – nachhaltiges Weiterbauen, Faktor Verlag (Seite 17)

Georg Aerni (Seite 18 und 19 links)

Plan: Meili & Peter Architekten AG (Seite 19 unten)

Studio Gataric Fotografie (Seite 19 rechts) Stellwerkost, Matthias Niedermann (Seite 20)

Eric Rossier (Seite 24 und 25 rechts)

Marcel Kohler (Seite 25 links)

Duccio Malagamba (Seite 26, 29 und 30)

TUM.wood (Seite 31)

PIRMIN JUNG Schweiz AG (alle drei Bilder Seite 33)

Marcoleu GmbH (Seite 34)

Tschopp Holzbau AG (Seite 35)

UMAR (Seite 36)

Muriel Mangold, Immobilien Basel-Stadt (Seite 38)

Zooey Braun, Stuttgart (Seite 39 und 40 oben)

René Müller (Seite 40 unten)

Zirkular, Pascal Hentschel (Seite 41)

EnergieSchweiz

Bundesamt für Energie BFE

Pulverstrasse 13

CH-3063 Ittigen

Postadresse: CH-3003 Bern

Infoline 0848 444 444 infoline.energieschweiz.ch

energieschweiz.ch

energieschweiz@bfe.admin.ch

ch.linkedin.com/company/energieschweiz