

Energieperspektiven 2035/2050

Energienachfrage

# **Energieverbrauch Industrie**

Ergebnisse der Szenarien la und Ib

Stand 15.7.2005

Auftraggeber Bundesamt für Energie, Bern Bearbeiter Walter Baumgartner Orsi Ebert Felix Weber

# Inhaltsverzeichnis

| E | inleit | ung                                  | 3  |
|---|--------|--------------------------------------|----|
| 1 | Mod    | dellierung                           | 3  |
|   | 1.1    | Modell-Ansatz                        | 3  |
|   | 1.2    | Branchenaufgliederung                | 5  |
|   | 1.3    | Energieträger und Systemabgrenzungen | 7  |
|   | 1.4    | Klimanormierung                      | 8  |
| 2 | Vor    | gaben                                | 9  |
|   | 2.1    | Wirtschaftliche Vorgaben             | 11 |
|   |        | 2.1.1 Trend                          | 11 |
|   |        | 2.1.2 BIP hoch                       | 14 |
|   | 2.2    | Energiepreise                        | 15 |
|   |        | 2.2.1 Trend                          | 15 |
|   |        | 2.2.2 Preise hoch                    | 16 |
|   | 2.3    | Energiebezugsflächen                 | 18 |
|   |        | 2.3.1 Trend                          | 18 |
|   |        | 2.3.2 BIP hoch                       | 19 |
|   | 2.4    | Energiepolitische Vorgaben           | 20 |
|   | 2.5    | Technische Vorgaben                  | 24 |
|   | 2.6    | Klimatische Vorgaben                 | 26 |
|   | 2.7    | Vorgaben des CEPE                    | 27 |
|   |        | 2.7.1 Trend                          | 27 |
|   |        | 2.7.2 Klima hoch                     | 28 |

| 3 | 3 Resultate |                                              |    |  |  |  |
|---|-------------|----------------------------------------------|----|--|--|--|
|   | 3.1         | Produktionsorientierte Hochrechnungsfaktoren | 29 |  |  |  |
|   |             | 3.1.1 Trend                                  | 29 |  |  |  |
|   |             | 3.1.2 BIP hoch                               | 35 |  |  |  |
|   | 3.2         | Flächenbezogene Hochrechnungsfaktoren        | 36 |  |  |  |
|   |             | 3.2.1 Trend                                  | 36 |  |  |  |
|   |             | 3.2.2 BIP hoch                               | 38 |  |  |  |
|   | 3.3         | Energieverbrauch Szenario Ia                 | 39 |  |  |  |
|   |             | 3.3.1 Trend                                  | 40 |  |  |  |
|   |             | 3.3.2 BIP hoch                               | 48 |  |  |  |
|   |             | 3.3.3 Preise hoch                            | 51 |  |  |  |
|   |             | 3.3.4 Klima hoch                             | 53 |  |  |  |
|   | 3.4         | Energieverbrauch Szenario Ib                 | 56 |  |  |  |
|   |             | 3.4.1 Trend                                  | 56 |  |  |  |
|   |             | 3.4.2 BIP hoch                               | 58 |  |  |  |
|   |             | 3.4.3 Preise hoch                            | 61 |  |  |  |
|   |             | 3.4.4 Klima hoch                             | 63 |  |  |  |
|   | 3.5         | CO <sub>2</sub> -Emissionen für Szenario Ia  | 66 |  |  |  |
|   |             | 3.5.1 Trend                                  | 66 |  |  |  |
|   |             | 3.5.2 BIP hoch                               | 67 |  |  |  |
|   |             | 3.5.3 Preise hoch                            | 68 |  |  |  |
|   |             | 3.5.4 Klima hoch                             | 69 |  |  |  |
|   | 3.6         | CO <sub>2</sub> -Emissionen für Szenario Ib  | 70 |  |  |  |
|   |             | 3.6.1 Trend                                  | 70 |  |  |  |
|   |             | 3.6.2 BIP hoch                               | 72 |  |  |  |
|   |             | 3.6.3 Preise hoch                            | 73 |  |  |  |
|   |             | 3.6.4 Klima hoch                             | 74 |  |  |  |
|   | 3.7         | Übersicht                                    | 74 |  |  |  |
|   | 3.8         | Robustheit der Resultate                     | 75 |  |  |  |
|   | Bibl        | iografie (Auszug)                            | 77 |  |  |  |

### **Einleitung**

Zur Zeit werden im Auftrag des Bundesamtes für Energie (BFE) für die Schweiz neue Energieperspektiven ausgearbeitet. Das vorliegende Dokument befasst sich mit dem Teil Industrie, der von Basics bearbeitet wird. Es fasst für die Szenarien Ia (Referenzszenario) und Ib (CO2-Abgabe) die wichtigsten Vorgaben und Annahmen zusammen und gibt einen knappen Überblick über die Resultate. Die Darstellung entspricht dem **Stand der Arbeiten per Mitte Juli 2005**. Eine ausführliche Darstellung ist mit dem Abschluss der Arbeiten vorgesehen.

Das Dokument ist wie folgt aufgebaut: Abschnitt 1 gibt einen knappen Überblick zur Modellierung, Abschnitt 2 fasst die wichtigsten Vorgaben zusammen und Abschnitt 3 referiert in Kürze die wichtigsten Resultate.

## 1 Modellierung

#### 1.1 Modell-Ansatz

Das für die Modellierung des industriellen Energieverbrauches verwendete Modell basiert auf Arbeiten, die 1993 ihren Anfang nahmen und mit der Publikation der Resultate für Szenarien I, II und II 1996 ihren ersten Abschluss fanden (Basics 1996). In der Folge wurden weitere Szenarien untersucht und das Modell in den Jahren 1999 und 2000 gründlich überholt und aktualisiert (Basics 2000). Für die seit Ende 2003 laufenden neuen Perspektivarbeiten wird im Wesentlichen das bestehende Modell verwendet, allerdings mit einer ganzen Reihe punktueller Verbesserungen. Dabei wurde auch der Übergang von einem Modell auf Fünf-Jahres-Basis zu einem Modell auf Jahresbasis vorgenommen.

Es kann hier selbstverständlich keine erschöpfende Beschreibung des Energie-Modells gegeben werden; im Rahmen der Schlussberichterstattung ist aber eine ausführliche Dokumentation enthalten. Wir beschränken uns deshalb auf einige wenige Anmerkungen.

Die Grundidee des Modells besteht darin, die Vielfalt des industriellen Energieverbrauchs im Sinne eines so genannten Bottom-up-Ansatzes auf einzelne Prozesse aufzuteilen. Gesamthaft werden im Modell 143 industrielle Prozesse unterschieden, z.B. das Kochen, Blanchieren usw. in der Nahrungsmittelindustrie, das Klinkerbrennen in der Zementindustrie, das Pressen von Profilen, Rohren, Stangen usw. in der Metallindustrie. Zu diesen "typischen" Industrieprozessen kommen weitere 64 Prozesse, die die energetischen Aufwendungen für Raumheizung, Warmwasser, Büro usw. beschreiben.

Jeder dieser Prozesse wird mengenmässig über einen "Hochrechnungsfaktor" und energetisch über einen spezifischen Verbrauch beschrieben. Hochrechnungsfaktoren sind z.B.: Bier (hl), Rohaluminium (t), Papier (t), Zement (t), verschiedene Produktionsindices, aber auch Energiebezugsflächen (m²). Durch die Multiplikation von Hochrechnungsfaktor und spezifischem Verbrauchsfaktor ergibt sich der Energieverbrauch für diesen Prozess. Durch Aufaddieren all dieser Energieverbräuche erhält man schliesslich den gesamtschweizerischen industriellen Energieverbrauch:

$$E(t) = \sum_{\substack{i=1 \ bis \ 203 \\ j=1 \ bis \ 13}} HF_i(t) \cdot SV_{i,j}(t)$$

E(t): Energieverbrauch im Kalenderjahr t

*HF*: Hochrechnungsfaktor

SV: Spezifischer Verbrauchsfaktor

t: Kalenderjahr

*i*: Prozess

*j*: Energieträger

Dabei gilt, dass jedem Prozess genau ein Hochrechnungsfaktor zugeordnet ist. Umgekehrt ist diese Eindeutigkeit aber nicht gegeben; so werden etwa in der Papierindustrie verschiedene (energieintensive) Prozesse unterschieden und damit separat modelliert, die sich alle auf den gleichen Hochrechnungsfaktor beziehen.

Modellmässig hängen die spezifischen Energieverbräuche über einen komplizierten Kohortenalgorithmus von den Hochrechnungsfaktoren ab: Je mehr produziert werden muss, desto stärker wird zuerst die Auslastung der bestehenden Anlagen zunehmen, und wenn dies nicht mehr reicht, wird der Anlagenpark mit zumeist energetisch besseren Einheiten erweitert. Umgekehrt werden bei Erreichen der "Altersgrenze" von Anlagen oder bei Rückgang der Produktion Anlagen ausgemustert (Details in der Modelldokumentation).

Wendet man diesen Modellierungsansatz auf die *Vergangenheit* an, dann ist einsichtig, dass man mit Konsistenzproblemen konfrontiert wird: Zunächst sind die Hochrechnungsfaktoren vorgegeben, für viele Prozesse sind auch die durchschnittlichen spezifischen Verbräuche im Zeitablauf bekannt, und last but not least ist über die Energiestatistik der gesamthaft resultierende Energieverbrauch vorgegeben. Weiter existieren für eine ganze Reihe von Branchen "eigene" Energiestatistiken, die ebenfalls sinnvoll ins Bild passen sollten, von vielen weiteren Detailinformationen ganz zu schweigen.

Es musste deshalb für die Vergangenheit mit den Methoden der Ausgleichsrechnung, z.T. aber auch mit einfachen Plausibilitätsüberlegungen ein möglichst in

sich stimmiges Set von Modell-Daten kreiert werden, das gesamthaft gesehen die Energieverbrauchsstatistik möglichst genau reproduziert. Bei einigen Energieträgern ist uns dies gut gelungen (etwa bei der Elektrizität), bei andern ergeben sich grössere Diskrepanzen (etwa beim Heizöl extra leicht). Wenn immer möglich und sinnvoll haben wir auf die Energiestatistik kalibriert, in einzelnen Fällen haben wir aus Konsistenzgründen die Differenzen aber stehen gelassen (etwa für das Gas oder für einzelne Jahre bei der Kohle). Gesamthaft gesehen sind die Differenzen aber nicht sehr gross.

## 1.2 Branchenaufgliederung

Tabelle 1-2 zeigt die Branchenaufgliederung des Industriemodells. Sie orientiert sich einerseits an der NOGA-Struktur, andererseits an der Energieverbrauchsthematik, indem grosse, homogene Verbraucher möglichst eine eigene "Branche" bilden.

Tab. 1-2: Branchenaufgliederung des Industriemodells von Basics

| Nr. | Branche<br>(Kurztitel)        | Beschreibung                                                                                                                                                                               | Unterab-<br>schnitt<br>(NOGA) | Abteilung,<br>Gruppe, Art<br>(NOGA) |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| 01  | Nahrung, Geträn-<br>ke, Tabak | Herstellung von Nahrungsmitteln und Getränken, Tabakverarbeitung                                                                                                                           | DA                            | 15, 16                              |
| 02  | Bekleidung                    | Herstellung von Textilien und Bekleidung                                                                                                                                                   | DB                            | 17<br>18                            |
|     |                               | Herstellung von Lederwaren und Schuhen                                                                                                                                                     | DC                            | 19                                  |
| 03  | Papier und Karton             |                                                                                                                                                                                            | DE                            | 21                                  |
| 04  | Chemie                        |                                                                                                                                                                                            | DG                            | 24                                  |
| 05  | Glas                          | Herstellung von Glas und Glaswaren                                                                                                                                                         | DI                            | 26.1                                |
| 06  | Keramik und<br>Ziegel         | Herstellung von keramischen Erzeugnissen (ohne Ziegelei und Baukeramik), Herstellung von keramischen Wand- und Bodenfliesen und -platten, Herstellung von Ziegeln und sonstiger Baukeramik | DI                            | 26.2<br>26.3<br>26.4                |

Im eigentlichen Sinne des Wortes gibt es für die Industrie gar keine vollständige Energie-Verbrauchs-Statistik. Für bestimmte Energieträger musste diese aus öffentlichen und internen Angaben mittels geeigneter Differenzüberlegungen erst konstruiert werden.

Tab. 1-2: Branchenaufgliederung des Industriemodells von Basics (Fortsetzung)

| Nr. | Branche<br>(Kurztitel)       | Beschreibung                                                                                                                                                                                                                                                                                                                                           | Unterab-<br>schnitt<br>(NOGA) | Abteilung,<br>Gruppe, Art<br>(NOGA) |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| 07  | Zement                       | Herstellung von Zement, Kalk und gebranntem Gips                                                                                                                                                                                                                                                                                                       | DI                            | 26.5                                |
| 08  | Übrige NE-<br>Mineralien     | Herstellung von Erzeugnissen aus Beton,<br>Gips und Zement, Be- und Verarbeitung von<br>Natursteinen, Herstellung von sonstigen<br>Produkten aus nichtmetallischen Mineralien                                                                                                                                                                          | DI                            | 26.6<br>26.7<br>26.8                |
| 09  | Metalle, Giessereien         | Erzeugung von Roheisen, Stahl und Ferrole-<br>gierungen (EGKS), Herstellung von Rohren,<br>Sonstige Erstbearbeitung von Eisen und<br>Stahl; Herstellung von Ferrolegierungen<br>nicht EGKS; Giessereiindustrie                                                                                                                                         | DJ                            | 27.1<br>27.2<br>27.3<br>27.5        |
| 10  | NE-Metalle                   | Erzeugung und Erstbearbeitung von NE-<br>Metallen                                                                                                                                                                                                                                                                                                      | DJ                            | 27.4                                |
| 11  | Metallerzeugnis-<br>se       | Herstellung von Metallerzeugnissen (ohne<br>Maschinenbau)                                                                                                                                                                                                                                                                                              | DJ                            | 28                                  |
| 12  | Maschinenbau,<br>Fahrzeugbau | Maschinenbau; Herstellung von Automobilen, Anhängern und Zubehör, Herstellung von sonstigen Fahrzeugen                                                                                                                                                                                                                                                 | DK                            | 29<br>34<br>35                      |
| 13  | Geräte                       | Herstellung von Büromaschinen, Datenver-<br>arbeitungsgeräten und -einrichtungen, Her-<br>stellung von Geräten der Elektrizitätserzeu-<br>gung, -verteilung u. ä., Herstellung von Ge-<br>räten der Radio-, Fernseh- und Nachrichten-<br>technik, Herstellung von medizinischen Ge-<br>räten, Präzisionsinstrumenten, optischen Ge-<br>räten und Uhren | DL                            | 30<br>31<br>32<br>33                |
| 14  | Energie, Wasser              | Kokerei; Mineralölverarbeitung; Behandlung von nuklearen Brennstoffen                                                                                                                                                                                                                                                                                  | DF                            | 23                                  |
|     |                              | Energieversorgung, Wasserversorgung                                                                                                                                                                                                                                                                                                                    | Е                             | 40<br>41                            |
| 15  | Baugewerbe                   |                                                                                                                                                                                                                                                                                                                                                        | F                             | 45                                  |

**Tab. 1-3:** Branchenaufgliederung des Industriemodells von Basics (Fortsetzung)

| Nr.                                             | Branche (Kurztitel) | Beschreibung                                                                                                                                                                               | Unterab-<br>schnitt<br>(NOGA) | Abteilung,<br>Gruppe, Art<br>(NOGA) |
|-------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| 16 Übrige                                       |                     | Kohle- und Torfgewinnung, Gewinnung von<br>Erdöl und Erdgas, Erbringung damit verb-<br>undener Dienstleistungen, Gewinnung von<br>Uran- und Thoriumerzen                                   | CA                            | 10<br>11<br>12                      |
|                                                 |                     | Erzbergbau, Gewinnung von Steinen und<br>Erden, sonstiger Bergbau                                                                                                                          | СВ                            | 13<br>14                            |
|                                                 |                     | Be- und Verarbeitung von Holz (ohne Herstellung von Möbeln)                                                                                                                                |                               | 20                                  |
| tigung von bespielten Ton-, Bild- un<br>trägern |                     | Verlagsgewerbe, Druckgewerbe, Vervielfältigung von bespielten Ton-, Bild- und Datenträgern                                                                                                 | DE                            | 22                                  |
|                                                 |                     | Herstellung von Gummi- und Kunststoffwaren                                                                                                                                                 | DH                            | 25                                  |
|                                                 |                     | Herstellung von Möbeln, Schmuck, Musik-<br>instrumenten, Sportgeräten, Spielwaren und<br>sonstigen Erzeugnissen, Rückgewinnung<br>und Vorbereitung für die Wiederverwertung<br>(Recycling) | DN                            | 36<br>37                            |

# 1.3 Energieträger und Systemabgrenzungen

Im Modell werden gesamthaft 13 verschiedene Energieträger unterschieden, vgl. Tabelle 1-3. Die Reihenfolge der einzelnen Energieträger hat keine inhaltliche Bedeutung, sie entspricht einfach der "historisch gewachsenen" Reihenfolge im Modell.

Zu betonen ist, dass grundsätzlich immer der *Endverbrauch* an Energieträgern gemeint ist. Damit sind z.B. die energetischen Aufwendungen einer Ölraffinerie im Rahmen des Raffinationsprozesses nicht enthalten, wohl aber z.B. ihr Endenergieverbrauch für Raumwärme und Warmwasser.

Tab. 1-3: Energieträger im Modell

| Modell-Kürzel | Erläuterungen                                                                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HEL           | Heizöl extra leicht                                                                                                                                                            |
| GAS           | Primär Erdgas, früher auch Stadtgas                                                                                                                                            |
| ELEKT         | Elektrizität, inkl. eigenproduzierter Elektrizität (thermisch und hydraulisch); fossilthermischer Input wird als Endverbrauch bei den entsprechenden Energieträgern gerechnet. |
| NAH_FERN      | Nah- und Fernwärme, ohne innerbetriebliche Abwärmenutzung u.ä.                                                                                                                 |
| HOLZ          | Holz und Holzkohle, kein Altholz und keine Holzabfälle                                                                                                                         |
| KOHLE         | vor allem Steinkohle, aber auch Braunkohle und Koks                                                                                                                            |
| ERNEU         | (neue) erneuerbare Energieformen (Umgebungswärme über Wärmepumpen, solarthermische Anwendungen u.ä.)                                                                           |
| DIES          | Diesel, vor allem im Baugewerbe (off-road), kleine Verkehrsanteile aber enthalten, wird in diesem Papier nicht ausgewiesen <sup>2</sup>                                        |
| HMS           | Heizöl mittel und schwer (ersteres kommt praktisch nicht mehr vor)                                                                                                             |
| ABFALL        | Industrieabfälle, Altholz u.a.                                                                                                                                                 |
| PETRK         | Petrolkoks                                                                                                                                                                     |
| UEBGAS        | Übrige Gase, vor allem Propan und Butan                                                                                                                                        |

# 1.4 Klimanormierung

Der Energieverbrauch der Industrie hängt vom "Klima" ab: In einem kalten Jahr kann der gesamte Energieverbrauch um mehr als 5 Prozent grösser sein als in einem warmen Jahr. Da in der Projektion ein durchschnittliches Klima unterstellt wird, müssen für Vergleichszwecke die effektiven Verbrauchswerte der Vergangenheit "klimanormiert" werden.

Hierzu wird formelmässig der folgende Ansatz verwendet:

Der Off-road-Anteil des Dieselverbrauchs wird gemäss neuer Aufgabenteilung von Infras modelliert. Im Modell von Basics wird der Dieselverbrauch aus Konsistenzgründen aber nach wie vor "mitgeschleppt", doch ohne neue Erkenntnisse zu berücksichtigen.

$$E_{klimanormiert} = \frac{E_{effektiv} \cdot 3588}{3588 + (HGT - 3588) \cdot a} \text{ mit } a = 0.75$$

 $E_{effektiv}$  effektiver klimaabhängiger Energieverbrauch (im Wesentlichen Raumheizung und Warmwasser)

HGT: Heizgradtagzahl

Die Klimanormierung bezieht sich damit nur auf den Heizungsanteil des Energieverbrauchs (der für alle 16 Modellbranchen mehr oder weniger genau bekannt ist). Dabei ist zu beachten, dass die Heizungsanteile in den verschiedenen Industriebranchen sehr stark variieren, von praktisch null Prozent bis weit über 50 Prozent. Der nicht heizungsbezogene Teil des Energieverbrauchs wird nicht klimanormiert.

Aus der Klimanormierung des Energieverbrauchs folgt dann automatisch die entsprechende Normierung in den CO<sub>2</sub>-Emissionen. Dieses Verfahren entspricht dem Vorgehen, welches das BFE und das Bundesamt für Umwelt, Wald und Landschaft (BUWAL) mit der Energieagentur der Wirtschaft (EnAW) abgesprochen haben. Die in Abschnitt 3 ausgewiesenen Resultate sind alle klimanormiert ausgewiesen, das heisst auf ein Jahr mit 3588 Heizgradtagen bezogen<sup>3</sup>.

# 2 Vorgaben

Unter Vorgaben verstehen wir feste Randbedingungen für die Modellierung der einzelnen Szenarien. Diese Vorgaben können quantifiziert sein oder nicht. Es geht dabei u. a. um Vorgaben zur wirtschaftlichen Entwicklung (Wertschöpfung, Beschäftigte), zu den Energiepreisen, Energiebezugsflächen, zum Klima und natürlich um die energiepolitischen Vorgaben, die die Szenarien "energetisch" definieren. Die genannten Vorgaben liegen nur zum kleinen Teil in der Verantwortung von Basics, sie werden aber nicht unkritisch übernommen, sondern möglichst in sich stimmig für das Modell "parametrisiert".

Es ist hier nicht der Platz, um die untersuchten bzw. noch zu untersuchenden Szenarien im Detail zu charakterisieren und anhand ihrer energiepolitischen Relevanz zu erläutern. Wir beschränken uns auf jene Angaben, die für das Verständnis des Folgenden unbedingt nötig sind.

Diese Zahl liegt deutlich über den tatsächlichen HGT-Zahlen der letzten Jahre, vgl. auch Abschnitt 2.6.

Grundsätzlich werden vier verschiedene Szenarien modelliert:

- Szenario I (Referenzszenario, Ia ohne CO2-Abgabe, Ib mit CO2-Abgabe),
- Szenario II (mit CO2-Abgabe plus Verstärkung freiwilliger Massnahmen sowie moderate Verschärfung von Vorschriften, vor allem im Gebäudebereich),
- Szenario III (zielorientiertes Szenario, u.a. Reduktion der CO2-Emissionen gegenüber 1990 um 30 % bis 2035, Senkung des Endenergieverbrauchs pro Kopf gegenüber 2000 um 40 % bis 2035),
- Szenario IV (zielorientiertes Szenario, u.a. Reduktion der CO2-Emissionen gegenüber 1990 um 60 % bis 2035, Senkung des Endenergieverbrauchs pro Kopf gegenüber 2000 um 60 % bis 2035).

Zu diesen Grundszenarien kommen noch so genannte Sensitivitätsanalysen. Bezogen auf das Szenario I betreffen diese gegenüber dem Trendfall die folgenden Untervarianten:

- BIP hoch (d.h. deutlich gedeihlicheres Wirtschaftswachstum)
- Klima hoch (d.h. wärmer als der bisherige langjährige Durchschnitt)
- Preise hoch (Energiepreise deutlich höher)

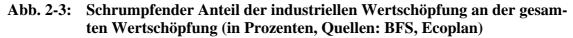
Das vorliegende Dokument thematisiert damit die folgenden Varianten (vgl. Tabelle 2-1). Gegenüber der Berichterstattung vom April 2005 kommen neu die Varianten BIP hoch, Klima hoch und Preise hoch dazu. Man beachte, dass immer nur eine "Variable" variiert wird. Kombinationen vom Typ "Ib, Preise hoch, Klima hoch" sind bislang nicht untersucht worden.

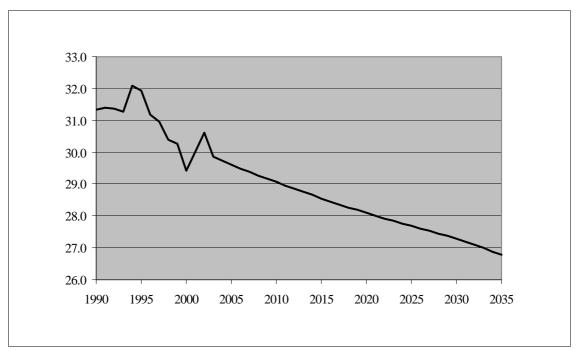
Tab. 2-1: Übersicht über die verschiedenen Szenario-Varianten

| Szenario | Varianten |          |            |             |  |  |  |
|----------|-----------|----------|------------|-------------|--|--|--|
| Ia       | Trend     | BIP hoch | Klima hoch | Preise hoch |  |  |  |
| Ib       | Trend     | BIP hoch | Klima hoch | Preise hoch |  |  |  |

Um Redundanzen in der Berichterstattung zu vermeiden und die Lesbarkeit zu steigern, werden hier die Vorgaben für Szenarien Ia und Ib und die Sensitivitäten nicht als separate Gesamtpakete beschrieben, sondern inhaltlich zusammengefasst dargestellt.

## 2.1 Wirtschaftliche Vorgaben


#### 2.1.1 Trend

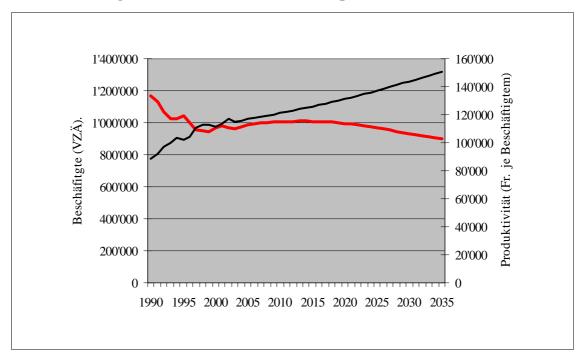

Die wichtigsten Vorgaben für die Modellierung betreffen die Wertschöpfungsdaten von Ecoplan (vgl. Tabelle 2-2). Für beide Szenarien (Ia und Ib) gelten hier die gleichen Vorgaben. Abgesehen von der Chemie entwickeln sich die einzelnen Industriebranchen eher moderat, für einige Branchen wird gar ein Rückgang prognostiziert. Gesamthaft gesehen wächst die industrielle Wertschöpfung in der Zeit von 1990 bis 2035 zwar um 31 Prozent, allerdings entfällt in absoluten Grössen ziemlich genau die Hälfte des Wachstums allein auf die Chemie.

Tab. 2-2: Wertschöpfung nach Branchen (real, Mio 90er Franken; Quellen: BFS, Ecoplan und Basics)

| Nr. | Branchen          | 1990    | 1995    | 2000    | 2005    | 2015    | 2025    | 2035    |
|-----|-------------------|---------|---------|---------|---------|---------|---------|---------|
| 1   | Nahrung           | 7'400   | 8'266   | 8'265   | 8'512   | 8'212   | 7'714   | 6'974   |
| 2   | Bekleidung        | 2'847   | 2'222   | 1'687   | 1'729   | 1'979   | 2'097   | 2'117   |
| 3   | Papierindustrie   | 1'393   | 1'521   | 1'607   | 1'632   | 1'750   | 1'776   | 1'747   |
| 4   | Chemie            | 5'614   | 9'335   | 12'750  | 14'680  | 16'727  | 18'609  | 21'184  |
| 5   | Glas              | 535     | 450     | 417     | 422     | 450     | 454     | 447     |
| 6   | Keramik           | 535     | 450     | 417     | 422     | 450     | 454     | 447     |
| 7   | Zement            | 161     | 135     | 125     | 127     | 135     | 136     | 134     |
| 8   | NE-Mineralien     | 1'445   | 1'214   | 1'126   | 1'139   | 1'214   | 1'226   | 1'208   |
| 9   | Metalle           | 1'030   | 1'024   | 1'065   | 1'126   | 1'217   | 1'236   | 1'208   |
| 10  | NE-Metalle        | 515     | 512     | 533     | 563     | 609     | 618     | 604     |
| 11  | Metallerzeugnisse | 7'570   | 7'525   | 7'701   | 8'175   | 8'841   | 8'974   | 8'774   |
| 12  | Maschinenbau      | 13'021  | 11'930  | 12'820  | 13'771  | 15'755  | 16'699  | 17'067  |
| 13  | Elektrotechnik    | 13'621  | 14'749  | 15'384  | 16'719  | 18'967  | 20'064  | 20'473  |
| 14  | Energie           | 7'463   | 9'728   | 8'981   | 9'381   | 9'894   | 10'000  | 9'868   |
| 15  | Bau               | 26'797  | 24'063  | 21'285  | 22'013  | 24'389  | 25'440  | 26'061  |
| 16  | Übrige            | 13'762  | 12'930  | 13'881  | 14'743  | 16'528  | 17'379  | 17'751  |
|     | Industrie total   | 103'710 | 106'052 | 108'043 | 115'153 | 127'115 | 132'875 | 136'066 |
|     | Schweiz total     | 330'929 | 332'580 | 367'353 | 388'872 | 445'122 | 479'865 | 508'223 |

Vergleicht man die industriellen Wertschöpfung mit der gesamtschweizerischen Wertschöpfung, dann setzt sich die schleichende (relative) Desindustrialisierung fort (vgl. Abbildung 2-3).

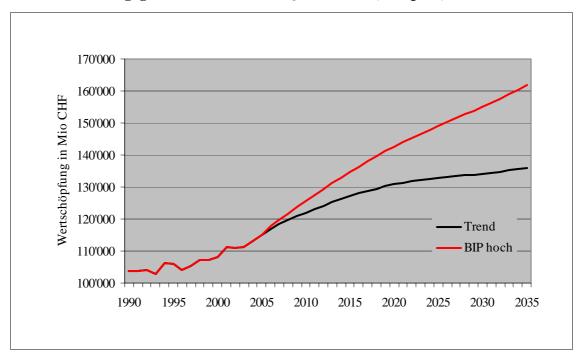





Die schrumpfende (relative) Bedeutung des Industriesektors zeigt sich auch an der Zahl der Beschäftigten (vgl. Tabelle 2-4). Deren Zahl nimmt im Vergleich 2035 – 1990 um rund 23 Prozent ab. Diese deutliche Abnahme wird allerdings durch eine beträchtliche Produktivitätssteigerung (gemessen an der Wertschöpfung pro Beschäftigtem) um rund 70 Prozent kompensiert. Abbildung 2-5 zeigt den zeitlichen Verlauf.

Tab. 2-4: Beschäftigte (Vollzeitäquivalent) im Zeitablauf nach Branchen (Quellen: BFS, Ecoplan, Basics)

| Nr. | Branchen          | 1990      | 1995      | 2000    | 2005    | 2015      | 2025    | 2035    |
|-----|-------------------|-----------|-----------|---------|---------|-----------|---------|---------|
| 1   | Nahrung           | 66'728    | 61'615    | 59'157  | 55'426  | 49'308    | 42'420  | 34'922  |
| 2   | Bekleidung        | 45'134    | 33'894    | 22'617  | 22'117  | 23'274    | 22'542  | 20'742  |
| 3   | Papierindustrie   | 15'804    | 15'508    | 14'401  | 14'358  | 14'249    | 13'313  | 11'997  |
| 4   | Chemie            | 72'833    | 64'099    | 58'934  | 62'014  | 63'527    | 63'824  | 65'937  |
| 5   | Glas              | 4'911     | 4'116     | 3'716   | 3'750   | 3'723     | 3'482   | 3'163   |
| 6   | Keramik           | 4'911     | 4'116     | 3'716   | 3'750   | 3'723     | 3'482   | 3'163   |
| 7   | Zement            | 1'473     | 1'235     | 1'115   | 1'125   | 1'117     | 1'045   | 949     |
| 8   | NE-Mineralien     | 13'259    | 11'114    | 10'033  | 10'126  | 10'053    | 9'402   | 8'539   |
| 9   | Metalle           | 13'795    | 10'899    | 10'772  | 10'674  | 10'744    | 10'092  | 9'093   |
| 10  | NE-Metalle        | 6'897     | 5'449     | 5'386   | 5'337   | 5'372     | 5'046   | 4'546   |
| 11  | Metallerzeugnisse | 84'645    | 84'902    | 80'600  | 83'221  | 83'774    | 78'684  | 70'895  |
| 12  | Maschinenbau      | 145'012   | 120'245   | 122'088 | 126'182 | 133'527   | 130'149 | 121'826 |
| 13  | Elektrotechnik    | 152'380   | 134'000   | 129'571 | 136'850 | 142'372   | 137'839 | 128'466 |
| 14  | Energie           | 26'235    | 26'113    | 24'221  | 22'653  | 21'905    | 20'219  | 18'137  |
| 15  | Bau               | 333'066   | 308'263   | 278'583 | 282'693 | 291'096   | 280'069 | 263'030 |
| 16  | Übrige            | 181'089   | 156'935   | 143'224 | 145'678 | 151'191   | 146'204 | 136'667 |
|     | Total 2. Sektor   | 1'168'173 | 1'042'504 | 968'132 | 985'953 | 1'008'956 | 967'813 | 902'073 |


Abb. 2-5: Beschäftigte in der Industrie (fallende Kurve) und deren Produktivität (steigende Kurve; Quellen: BFS, Ecoplan)



#### 2.1.2 BIP hoch

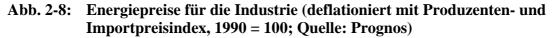
In der Sensitivitätsvariante BIP hoch geht man von einem deutlich stärkeren Wirtschaftswachstum aus als im Trend (vgl. Abbildung 2-6). Gegenüber 1990 nimmt die reale Wertschöpfung in der Industrie in der Variante BIP hoch um rund 56 % zu, gegenüber 31 % im Trendfall. Wichtig für die Modellierung ist dabei die Tatsache, dass in der Variante BIP hoch nicht einfach ein höheres Wirtschaftsniveau erreicht wird, sondern über den gesamten Zeitraum eine grundsätzlich deutlich dynamischere Wirtschaft unterstellt wird. Die quantitativen Details für die einzelnen Branchen sind in Tabelle 2-7 zusammengefasst.

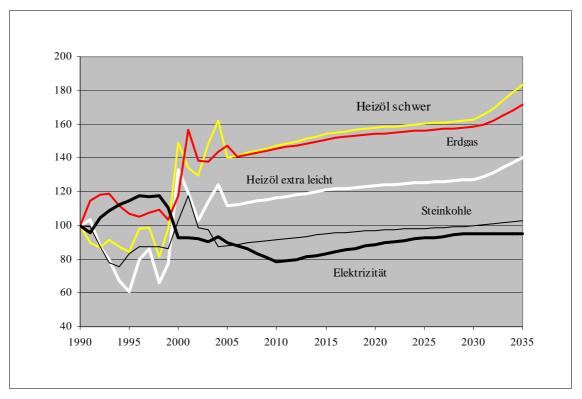
Abb. 2-6: Entwicklung der industriellen Wertschöpfung in der Variante BIP hoch gegenüber dem Trend (Quellen: BFS, Ecoplan, Basics)



Dieses deutlich höhere Wirtschaftswachstum zeigt sich auch in der Zahl der Beschäftigten, gesamthaft ist diese 2035 um rund 23'000 grösser als im Trendfall. Allerdings ist diese Zunahme nicht einheitlich über die Branchen verteilt, sondern "lebt" vor allem von einer deutlichen Zunahme der Beschäftigten im Bausektor.

Tab. 2-7: Wertschöpfung nach Branchen (real, Mio 90er Franken; Quellen: BFS, Ecoplan und Basics)


| Nr. | Branchen          | 1990    | 1995    | 2000    | 2005    | 2015    | 2025    | 2035    |
|-----|-------------------|---------|---------|---------|---------|---------|---------|---------|
| 1   | Nahrung           | 7'400   | 8'266   | 8'265   | 8'512   | 8'573   | 8'376   | 7'825   |
| 2   | Bekleidung        | 2'847   | 2'222   | 1'687   | 1'729   | 2'100   | 2'365   | 2'555   |
| 3   | Papierindustrie   | 1'393   | 1'521   | 1'607   | 1'632   | 1'854   | 1'994   | 2'077   |
| 4   | Chemie            | 5'614   | 9'335   | 12'750  | 14'680  | 17'002  | 19'184  | 22'148  |
| 5   | Glas              | 535     | 450     | 417     | 422     | 487     | 532     | 566     |
| 6   | Keramik           | 535     | 450     | 417     | 422     | 487     | 532     | 566     |
| 7   | Zement            | 161     | 135     | 125     | 127     | 146     | 159     | 170     |
| 8   | NE-Mineralien     | 1'445   | 1'214   | 1'126   | 1'139   | 1'314   | 1'435   | 1'529   |
| 9   | Metalle           | 1'030   | 1'024   | 1'065   | 1'126   | 1'303   | 1'417   | 1'485   |
| 10  | NE-Metalle        | 515     | 512     | 533     | 563     | 652     | 708     | 742     |
| 11  | Metallerzeugnisse | 7'570   | 7'525   | 7'701   | 8'175   | 9'464   | 10'289  | 10'784  |
| 12  | Maschinenbau      | 13'021  | 11'930  | 12'820  | 13'771  | 16'720  | 18'824  | 20'468  |
| 13  | Elektrotechnik    | 13'621  | 14'749  | 15'384  | 16'719  | 20'153  | 22'697  | 24'752  |
| 14  | Energie           | 7'463   | 9'728   | 8'981   | 9'381   | 10'083  | 10'440  | 10'601  |
| 15  | Bau               | 26'797  | 24'063  | 21'285  | 22'013  | 26'785  | 30'677  | 34'519  |
| 16  | Übrige            | 13'762  | 12'930  | 13'881  | 14'743  | 17'511  | 19'517  | 21'156  |
|     | Industrie total   | 103'710 | 106'052 | 108'043 | 115'153 | 134'632 | 149'146 | 161'945 |
|     | Schweiz total     | 330'929 | 332'580 | 367'353 | 388'872 | 467'942 | 530'361 | 590'592 |


# 2.2 Energiepreise

#### 2.2.1 Trend

Weitere wichtige Vorgaben betreffen die Energiepreise. Abbildung 2-8 zeigt indexiert den zeitlichen Verlauf in der Vergangenheit wie im Trendfall unterstellt. Die Preisentwicklung für die übrigen Energieträger wurde von Basics aufgrund von Vorgaben von Prognos selbst geschätzt. Im Wesentlichen werden für die Preise die heute gültigen Preisrelationen fortgeschrieben. Mit einer Verknappung der fossilen Energieträger wird also ausdrücklich nicht gerechnet, wie wohl gegen Ende des Betrachtungszeitraumes deren Preise etwas stärker anziehen. Zu beachten ist, dass die Preise mit dem Produzenten- und Importpreis deflationiert sind. So ist es durchaus möglich, dass sich die gleichen nominalen Preise für einen Energieträger für die Haushalte real anders darstellen als für die Industrie. Das gilt insbesondere für die Elektrizität in den 90er Jahren.

Tabelle 2-9 zeigt die Energiepreise im direkten Vergleich bezogen auf ein Terajoule. Der mit Abstand günstigste Energieträger ist und bleibt die Kohle.

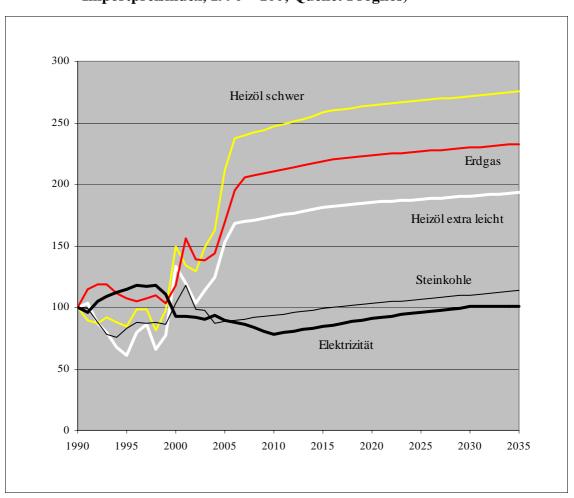




Tab. 2-9: Reale Preise für die wichtigsten Energieträger im direkten Vergleich (Fr. je TJ, Quelle: Prognos, Umrechnungen: Basics)

|      | HEL    | GAS    | ELEK   | FERN   | HOLZ  | KOHLE | HMS   |
|------|--------|--------|--------|--------|-------|-------|-------|
| 1990 | 8'920  | 7'517  | 34'444 | 12'278 | 3'769 | 2'311 | 5'043 |
| 1995 | 5'438  | 8'040  | 39'444 | 12'709 | 3'439 | 1'921 | 4'262 |
| 2000 | 11'878 | 8'842  | 31'944 | 12'791 | 3'252 | 2'380 | 7'524 |
| 2005 | 9'956  | 11'075 | 30'833 | 15'516 | 3'713 | 2'034 | 7'071 |
| 2010 | 10'384 | 10'934 | 26'944 | 16'005 | 3'884 | 2'118 | 7'434 |
| 2015 | 10'800 | 11'332 | 28'611 | 16'630 | 4'051 | 2'200 | 7'791 |
| 2020 | 11'029 | 11'590 | 30'556 | 17'193 | 4'235 | 2'244 | 7'961 |
| 2025 | 11'187 | 11'744 | 31'944 | 17'652 | 4'400 | 2'273 | 8'078 |
| 2030 | 11'348 | 11'899 | 32'778 | 18'130 | 4'574 | 2'302 | 8'195 |
| 2035 | 12'488 | 12'898 | 32'778 | 19'193 | 4'758 | 2'376 | 9'262 |

#### 2.2.2 Preise hoch


Die für den Trendfall geltenden Energiepreise zeigen tatsächlich eine sehr moderate Entwicklung. Sie reflektieren eine Welt, in der die Energie in ausreichendem Masse und eben zu (sehr) günstigen Preisen zur Verfügung steht. Gerade die

neuste Entwicklung am Ölmarkt zeigt aber, dass die energetische Zukunft auch ganz anders aussehen könnte. Die Sensitivitätsvariante "Preise hoch" ist eine Fortschreibung der aktuellen Situation, in dem die Preis zwar noch etwas ansteigen, aber im Wesentlichen auf dem erreichten Niveau verharren (vgl. Abbildung 2-10).

Nach wie vor sehr günstig bleiben die Kohle, und – vor allem – die Elektrizität, was ceteris paribus einen erheblichen Substitutionsdruck in diese Energieträger erzeugt. In wie fern diese Preisannahmen aber in sich stimmig sind, muss zunächst offen bleiben. So ist z.B. denkbar, dass die Elektrizitätspreise in einem weitgehend liberalisierten Markt durch die hohen Preise der fossilen Energieträger ebenfalls kräftig anziehen könnten.

Tabelle 2-11 zeigt die Energiepreise im direkten Vergleich bezogen auf ein Terajoule.

Abb. 2-10: Energiepreise für die Industrie (deflationiert mit Produzenten- und Importpreisindex, 1990 = 100; Quelle: Prognos)



Tab. 2-11: Reale Preise für die wichtigsten Energieträger im direkten Vergleich (Fr. je TJ, Quelle: Prognos, Umrechnungen: Basics)

|      | HEL    | GAS    | ELEK   | FERN   | HOLZ  | KOHLE | HMS    |
|------|--------|--------|--------|--------|-------|-------|--------|
| 1990 | 8'920  | 7'517  | 34'444 | 12'278 | 3'769 | 2'311 | 5'043  |
| 1995 | 5'438  | 8'040  | 39'444 | 12'709 | 3'439 | 1'921 | 4'262  |
| 2000 | 11'878 | 8'842  | 31'944 | 12'791 | 3'252 | 2'380 | 7'524  |
| 2005 | 13'644 | 12'702 | 30'919 | 17'030 | 3'492 | 2'041 | 10'658 |
| 2010 | 13'644 | 12'702 | 30'919 | 17'030 | 3'492 | 2'041 | 10'658 |
| 2015 | 15'533 | 15'815 | 26'990 | 18'756 | 3'693 | 2'167 | 12'454 |
| 2020 | 16'185 | 16'434 | 29'072 | 19'505 | 3'910 | 2'294 | 13'046 |
| 2025 | 16'527 | 16'818 | 31'402 | 20'168 | 4'148 | 2'385 | 13'326 |
| 2030 | 16'761 | 17'043 | 33'082 | 20'706 | 4'374 | 2'463 | 13'518 |
| 2035 | 16'997 | 17'268 | 34'608 | 21'266 | 4'616 | 2'544 | 13'708 |

## 2.3 Energiebezugsflächen

#### 2.3.1 Trend

Die Energiebezugsflächen sind ebenfalls eine wichtige Vorgabe für die Energiemodellierung; insbesondere der Split Produktionsflächen/Büroflächen. Hierzu standen die Globalvorgaben von Wüest & Partner zur Verfügung (vgl. Abbildung 2-12).

Die Festlegung der Umnutzungsflächen (Industriebrachen) sowie die Verteilung der Flächen auf die einzelnen Branchen wurden von Basics auf Grundlage der prognostizierten Hochrechnungsfaktoren vorgenommen (vgl. Abschnitt 3.2).

Leerbestände Total Büro **Total Produktion** 

Abb. 2-12: Verteilung der Energiebezugsflächen auf Produktion, Büro und Leerbestände (in Mio m², Quellen: Wüest & Partner, Basics)

#### 2.3.2 BIP hoch

Die Energiebezugsflächen "reagieren" natürlich positiv auf ein höheres Wirtschaftswachstum. Abbildung 2-13 zeigt den Unterschied bezüglich der effektiv (äquivalent voll) beheizten Energiebezugsflächen. Die Abbildung zeigt also den energetisch massgeblichen Unterschied zwischen Trend und BIP hoch bezüglich der Energiebezugsflächen. Ein Teil der Leerbestände wird voll oder zum Teil beheizt.

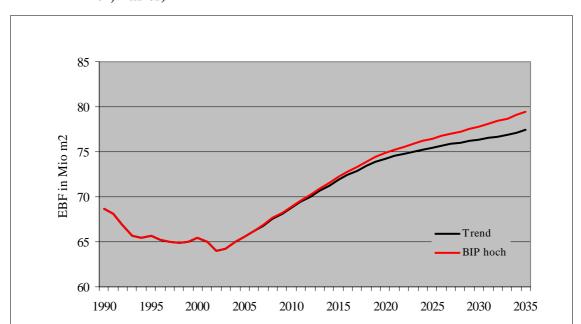



Abb. 2-13: Effektiv (äquivalent voll) beheizte Energiebezugsflächen im Trend-Fall und in der Sensitivitätsvariante "BIP hoch" (Quellen: Wüest & Partner, Basics)

# 2.4 Energiepolitische Vorgaben

Unterschiedliche energiepolitische Vorgaben machen den Unterschied zwischen Szenario Ia und Ib aus.

Grundsätzlich meint Szenario Ia über die oben dargestellten Vorgaben hinaus: "business as usual". Dies bedeutet, dass die zur Zeit geltenden energie- und umweltpolitischen Rahmenbedingungen trendmässig fortgeschrieben werden. Dies bedeutet, dass die inzwischen vom Bundesrat beschlossene CO<sub>2</sub>-Abgabe *nicht* Bestandteil von Szenario Ia ist. Es werden lediglich die bis (zum weitaus grösseren Teil) *freiwilligen Vereinbarungen* der Wirtschaft über die zu erreichenden Verbrauchsziele bei der Energie und die zu erreichenden Emissionsziele beim CO<sub>2</sub> in Rechnung gestellt. (vgl. Tabelle 2-14). Die in Klammern gesetzte Einschränkung bezüglich der "Freiwilligkeit" bezieht sich u.a. auf den so genannten "Grossverbraucherparagraphen" in einigen kantonalen Energiegesetzen: Durch Eingehen einer solchen Vereinbarung kann man sich als Grossverbraucher von der Einhaltung zahlreicher Einzelvorschriften dispensieren. Dazu kommen Bestrebungen von Elektrizitätswerken, über Effizienztarife das Energiesparen zu fördern.

Tab. 2-14: Übersicht über Vereinbarungen, Verpflichtungen usw. (die Differenz zwischen Szenario Ia und Ib wird durch die grau unterlegten Felder markiert)

|                                              | Item                                                            | Gegenstand                              | Bedingungen /<br>Ergänzungen                                            | Gegenleistung                                                           | Sanktionen                                               |
|----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| Bund                                         | Freiwillige<br>Ziel-<br>vereinbarung                            | CO <sub>2</sub><br>und Energie          |                                                                         | Berücksichtigung bei Abgabeentscheid                                    | keine                                                    |
|                                              | Verpflichtungs-<br>taugliche Ziel-<br>vereinbarung              | CO <sub>2</sub><br>(Energie freiwillig) | wird bei CO <sub>2</sub> -<br>Abgabe in<br>Verpflichtung<br>übergeführt | Berücksichtigung bei Abgabeentscheid                                    | keine                                                    |
|                                              | Verpflichtung<br>bei CO <sub>2</sub> -<br>Abgabe                | CO <sub>2</sub><br>(Energie freiwillig) | Unternehmen<br>zur Überfüh-<br>rung frei, neue<br>Verpflich-<br>tungen  | Rückerstattung<br>CO <sub>2</sub> -Abgabe,<br>keine Rück-<br>verteilung | Nachzahlen der<br>CO <sub>2</sub> -Abgabe<br>plus Zinsen |
| Kantone<br>AI NE SG<br>ZH weitere<br>in Rev. | Universal-<br>vereinbarung<br>(MUKEN,<br>Grossverbrau-<br>cher) | Energie                                 | falls Vereinba-<br>rung mit Bund<br>oder "direkt"                       | Entlastung von<br>Detailvor-<br>schriften                               | Detailvor-<br>schriften gelten<br>wieder                 |
| EVU's (in<br>Disk. z.B.<br>ZH)               | Effizienztarife                                                 | Energie                                 | falls Vereinba-<br>rung mit Bund /<br>Kanton oder<br>"direkt"           | günstigerer<br>Strom                                                    | Verlust der<br>Vergünstigung                             |

Natürlich wurde der energetische Grossteil der EnAW-Vereinbarungen vor allem deshalb eingegangen, um sich von einer allfälligen CO<sub>2</sub>-Abgabe befreien zu lassen. Falls es keine CO<sub>2</sub>-Abgabe gibt (wie in diesem Szenario angenommen), dürfte dies zur Folge haben, dass die von den Unternehmen in Aussicht gestellten Verbrauchs- und Reduktionsziele nicht oder nur zum Teil erreicht werden. Aufgrund von informellen Gesprächen gehen wir davon aus, dass bis 2010 (d.h. im Mittel der Jahre 2008 bis 2012) etwa die Hälfte des Differenzeffektes überleben dürfte (vgl. Abbildung 2-15). Differenzeffekt meint den Unterschied zwischen "business as usual" und dem im Rahmen einer Verpflichtung versprochenen Zielverbrauch, wenn eine Zielvereinbarung tatsächlich in eine gleichlautende Verpflichtung übergeführt würde. Ausgangspunkt für eine Vereinbarung ist dabei die so genannte unbeeinflusste Entwicklung, die keinen spezifischen energetische Fortschritt (bzw. keine spezifische CO2-Minderung) beinhaltet. Von dieser unbeeinflussten Entwicklung ausgehend wird dann ein an konkreten Massnahmen festzumachendes Sparbetreffnis definiert. Die Halbierung des Diffe-

renzeffektes ist ein grober Durchschnittswert; im Einzelnen gehen wir von Branche zu Branche von deutlich unterschiedlichen Verhältnissen aus.

Abb. 2-15: Wirkung von freiwilligen Vereinbarungen (ohne CO<sub>2</sub>-Abgabe) und Wirkung von Verpflichtungen (mit CO<sub>2</sub>-Abgabe): Prinzipskizze, Erläuterungen im Text



Der einzige Unterschied zwischen Szenario Ib und Ia besteht in einer CO<sub>2</sub>-Abgabe, die ab 1.1. 2006 eingeführt werden soll und dann nominal konstant gehalten wird (vgl. Tabellen 2-16 und 2-17). In diesem Fall würden, wie schon angetönt, u.a. verpflichtungstaugliche Zielvereinbarungen zu Verpflichtungen umgewandelt. Für die betroffenen Unternehmen hätte dies zur Folge, dass sie die CO<sub>2</sub>-Abgabe entsprechend ihrer Zahlung zurück erhalten. Falls sie die abgemachten Ziele im Durchschnitt der Jahre 2008-2012 aber nicht erreichen sollten müsste die Abgabe nachgezahlt werden.

Für alle diejenigen Unternehmen, die sich nicht von der Abgabe befreien lassen, wird die Abgabe staatsquotenneutral erhoben: Dies bedeutet, dass die Einnahmen aus der Abgabe an die zahlenden Unternehmen gemäss AHV-Lohnsumme rückerstattet werden.

Tab. 2-16: Abgabensätze für die CO<sub>2</sub>-Abgabe (nominale Werte; Quellen: Prognos 25. 10. 04 und BUWAL 24. 4. 03 sowie Basics)

| Energieträger                        | Abgabe | Einheit |
|--------------------------------------|--------|---------|
| Heizöl                               | 9      | Rp/l    |
| Heizöl S                             | 11     | Rp/l    |
| Erdgas                               | 7      | Rp/Nm3  |
| Steinkohle                           | 9      | Rp/kg   |
| Petrolkoks                           | 12     | Rp/kg   |
| Propan                               | 11     | Rp/kg   |
| Butan                                | 11     | Rp/kg   |
| Andere gasförmige Kohlenwasserstoffe | 12     | Rp/kg   |
| Holz (indirekte Wirkung 2006)*       | 10.0   | %       |
| Holz (indirekte Wirkung 2008)*       | 19.5   | %       |
| Holz (indirekte Wirkung 2035)**      | 12.2   | %       |
| Fernwärme (indirekte Wirkung 2006)*  | 5.8    | %       |
| Fernwärme (indirekte Wirkung 2008)*  | 5.6    | %       |
| Fernwärme (indirekte Wirkung 2035)** | 3.5    | %       |

<sup>\*</sup> Quelle: Prognos (Mail 13.1. 05)

Tab. 2-17: Reale Preiserhöhung durch CO<sub>2</sub>-Abgabe für verschiedene Energieträger im Zeitablauf (in Prozenten, Umrechnung und Deflationierung durch Basics)

|                     | 2006 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 |
|---------------------|------|------|------|------|------|------|------|
| Heizöl extra leicht | 24   | 23   | 21   | 20   | 18   | 17   | 15   |
| Erdgas              | 18   | 17   | 16   | 14   | 14   | 13   | 11   |
| Elektrizität        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Fernwärme           | 6    | 5    | 5    | 5    | 4    | 4    | 4    |
| Holz                | 10   | 19   | 17   | 16   | 15   | 14   | 12   |
| Kohle               | 120  | 113  | 104  | 97   | 91   | 84   | 77   |
| Heizöl schwer       | 38   | 35   | 32   | 30   | 28   | 26   | 22   |

Für die Modellierung von Szenario Ib wird angenommen, dass die abgeschlossenen oder in Vorbereitung befindlichen Vereinbarungen eingehalten werden und ihren Beitrag zu den Reduktionszielen gemäss CO<sub>2</sub> Gesetz bis 2012 beitragen. Da heute noch nicht bekannt ist, ob und in welcher Form nach 2012 Zielvereinbarungen realisiert werden, wird unterstellt, dass sich zu den Abgabesätze "passende" CO<sub>2</sub>-Reduktionen ergeben, wobei für die energieintensiven Branchen spezielle Annahmen gelten.

<sup>\*\*</sup> Extrapolation Basics

## 2.5 Technische Vorgaben

Im eigentlichen Sinne gibt es für die Szenario-Rechnungen keine technischen Vorgaben. Tatsächlich wurden aber die verschiedensten Informationen zur Entwicklung von Querschnittstechnologien und von branchenspezifischen Technologien verwendet, die zur Grundphilosophie der beiden Szenarien passen (keine Technologiesprünge, aber z.T. beträchtliche graduelle Verbesserungen/Innovationen. Wir beschränken uns hier auf ein paar kursorische Anmerkungen. Die Details werden im Schlussbericht dargestellt.

Zunächst: Grundsätzlich geht man davon aus, dass in der Industrie heute nicht alle Energiesparmassnahmen getroffen werden, die effektiv wirtschaftlich wären. In der EU rechnet man, dass wären *heute* aller wirtschaftlichen Massnahmen realisiert, der Energieverbrauch um etwa 20 Prozent geringer wäre (COM 2003). Rein technisch gesehen wäre sogar eine Minderung um 40 Prozent möglich. Für die Schweiz gehen wir von etwa halb so grossen aktuellen Potenzialen aus<sup>4</sup>, die sich bis Ende 2035 wegen des technischen Fortschrittes etwa verdoppelt würden.

Ein wichtiger inhaltlicher "Aufhänger" für das Energiemodell sind so genannte Querschnittstechnologien. Es sind dies Technologien, die nicht nur in ganz spezifischen Produktionsprozessen, sondern branchenübergreifend in ganz unterschiedlichen Zusammenhängen zur Anwendung gelangen. Die für das Modell berücksichtigten Querschnittstechnologien fasst Tabelle 2-18 zusammen (verwendete Quellen: Basics (2000), verschiedene Sites wie ATLAS, MOTOR CHALLENGE PROGRAMM, die IKARUS-Datenbank samt den zugehörigen Publikationen sowie weitere Unterlagen, vgl. auch den Auszug aus der Bibliografie).

Vor allem auch deshalb, weil in der Schweiz die energieintensiven z.T. schon recht nahe an der technologischen Grenze produzieren.

Tab. 2-18: Querschnittstechnologien (Quellen: vgl. Text)

| Technologie                                                                                           | Anwendungsbereich                                          | Mögliche Reduktionen bis 2020 des Gesamtenergieverbrauchs in typischen Anwendungen bei Einsatz der besten Technologie gegenüber heutigem Durchschnitt in %) |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elektromotoren<br>Drehzahlregulierung, Last-<br>management, Vermeidung<br>von Teillastzuständen       | Umwandlung von Elekt-<br>rizität in mechanische<br>Energie | 5 - 35                                                                                                                                                      |
| Kompressionsmaschinen<br>Pumpen<br>Verrohrungsgeometrie<br>Druckluft                                  | Bereitstellung und Trans-<br>port von Fluiden              | 2 - 15<br>8 - 20<br>5 - 25<br>5 - 50                                                                                                                        |
| Wärmetauscher<br>Kaskadennutzung,<br>Brüdenkompression                                                | Wärmerückgewinnung                                         | 4 - 20<br>8 - 40                                                                                                                                            |
| Trockner Erwärmungstechnologien: Laser, Lichtbogen, Mikrowellen, Infrarotstrahlung, induktives Heizen | Erwärmung                                                  | 2 - 15<br>5 - 25                                                                                                                                            |
| Brenner<br>Kondensationskessel                                                                        | Verbrennungsvorgänge                                       | 4 - 10<br>6 - 8                                                                                                                                             |
| Wärme-Kraft-<br>Kopplungsanlagen                                                                      | Elektrizitäts- und Wär-<br>meproduktion                    | 5 - 12<br>(Primärenergie)                                                                                                                                   |
| Wärmedämmung                                                                                          | Kessel<br>Rohre (heisse und kalte<br>Fluide)               | 4 - 8<br>5 - 20                                                                                                                                             |
| Recycling (Papier, Karton, Glas, Aluminium, Stahl u.a.)                                               | Rohstoffe/Ausgangsstoffe                                   | 15 - 80                                                                                                                                                     |
| Biotechnologie                                                                                        | Chemie                                                     | 0 - 95                                                                                                                                                      |
| Tribologische Massnahmen                                                                              | Schmieren, Kuppelungen,<br>Transmission, Getriebe          | 3 - 20                                                                                                                                                      |
| CAx<br>Roboterisierung<br>Automatisierung<br>Biotechnologie                                           | Produktionsablauf                                          | (-2)* - 15<br>(-10)* - 10<br>(-5)* - 18<br>0 - 95                                                                                                           |
| Messen, Regeln,<br>Steuern                                                                            | für alle Produktionsprozesse                               | 6 - 15                                                                                                                                                      |

<sup>\*</sup> Minuszeichen: Zunahme

Die Spannweiten bedeuten etwa Folgendes: Die untere Grenze markiert zumeist die wirtschaftlich besonders lukrativen Potenziale *und/oder* jene Fälle, bei denen die Anwendung bzw. Verbesserung einer bestimmten Querschnittstechnologie nur eingeschränkt möglich ist. Die obere Grenze meint demgegenüber eher weniger wirtschaftliche Potenziale *und/oder* Fälle, bei denen die Anwendung bzw. Verbesserung einer bestimmten Querschnittstechnologie besonders viel bringt.<sup>5</sup>

Diese Querschnittstechnologien gehen, von einigen Ausnahmen abgesehen (etwa Abwärmenutzung, WKK-Anlagen), nicht direkt, sondern nur als "Bestandteile" der einzelnen Prozesse ein (vgl. Abschnitt 1.1.): Für jeden Prozess wurde für den technologischen Referenzfall die möglichen Effizienzfortschritte anhand der involvierten Querschnittstechnologien und anhand der branchen- und prozessspezifischen Gegebenheiten im Zeitablauf definiert. Bezogen auf die jeweiligen Hochrechnungsfaktoren ergeben sich bei den neusten bis 2035 im Modell abgebildeten Anlagen spezifische Verbesserungen im Bereiche von 10 bis 25 Prozent (in Einzelfällen auch mehr oder weniger, siehe auch Basics (2000)). Sämtliche 143 Produktions-Prozesse werden im Übrigen im Schlussbericht ausführlich dargestellt werden.

## 2.6 Klimatische Vorgaben

Allgemein wird davon ausgegangen, dass durch den Menschen bedingt die globale Durchschnittstemperatur bis Mitte dieses Jahrhunderts um 1 bis 5 °C. zunehmen könnte (je nach Quelle mit etwas anderen Intervallgrenzen). Tatsächlich zeigt die Entwicklung der Heizgradtage seit 1970 tatsächlich einen klar abnehmenden Trend (vgl. Abbildung 2-19). Bis anhin wurde in den Perspektiven ein gleich bleibendes, dem Durchschnitt der Jahre 1970 bis 1992 entsprechendes Klima unterstellt. Dies entspricht dem Trendfall.

Für die Variante Klima hoch wird neu angenommen, dass die durchschnittliche Temperatur ab 2006 bis 2035 vom September bis Mai um 1 °C. und von Juni bis August um 2 °C. zunehmen wird. Dies bedeutet nicht nur eine klimabedingte Abnahme des Raumwärmebedarfs, sondern auch eine Zunahme des Kühlbedarfs im Sommer. Zur Zeit wird davon ausgegangen, dass die "Kühlgradtage" (bei ei-

Ein Beispiel für den letzten Fall stellt die vollständige Umstellung eines bisher klassisch geführten chemischen Prozesses auf einen biotechnologisch basierten Prozess dar. Im Einzelfall kann daraus eine Verringerung des Energieverbrauchs um fast 100 Prozent resultieren (z.B. dann wenn der Prozess nun bei Zimmertemperatur ablaufen kann). Die Biotechnologie ist gleichzeitig auch ein Beispiel dafür, dass auch andere als technische oder ökonomische Gründe eine energetische Verbesserung verhindern können: Biotechnologische Prozesse sind nämlich bewilligungspflichtig mit z.T. recht aufwändigen und langwierigen Genehmigungsverfahren.

ner Basistemperatur von rund 18 °C.) bis 2035 gegenüber heute um 100 Prozent zunehmen werden.

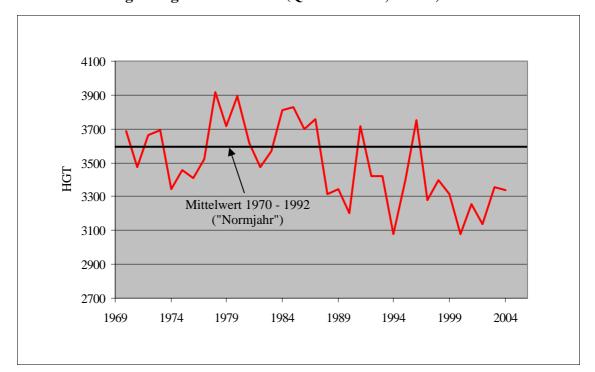



Abb. 2-19: Heizgradtage 1970 bis 2004 (Quellen: BFE, Basics)

# 2.7 Vorgaben des CEPE

Für die Büros in der Industrie übernehmen wir für die Wärme und die Elektrizität die spezifischen Modellierungs-Resultate des CEPE, insofern sind sie für uns Vorgaben. Allerdings betrifft diese Übernahme direkt nur die Varianten Ia Trend und Ib Trend sowie Klima hoch (vgl. Abschnitt 2.6). Die Ergebnisse für die übrigen Varianten werden von Basics basierend auf diesen Inputs selbst abgeleitet.

#### 2.7.1 Trend

Tabelle 2-20 zeigt die Energiekennzahlen Wärme und Elektrizität für Büros. Während bei der Wärme auf den effektiven, je nach Branche etwas verschiedenen Raumwärmebedarf kalibriert wird (inkl. Energieträgersplit, der gemäss CE-PE eine unterschiedliche relative Effizienzverbesserung zur Folge hat), werden bei der Elektrizität die Resultate absolut übernommen.

Abb. 2-20: Energiekennzahlen Wärme und Elektrizität für Büros gemäss CEPE (Stand 3.3.05)

|      | Ia                            | Ia                                   | Ib                            | Ib                                   | Differenz Ib zu Ia            |                                      |  |
|------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--|
| Jahr | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität |  |
|      | (MJ/m2)                       | (MJ/m2)                              | (MJ/m2)                       | (MJ/m2)                              | (%)                           | (%)                                  |  |
| 1990 | 578                           | 235                                  | 578                           | 235                                  | 0.0                           | 0.0                                  |  |
| 1995 | 529                           | 247                                  | 529                           | 247                                  | 0.0                           | 0.0                                  |  |
| 2000 | 496                           | 260                                  | 496                           | 260                                  | 0.0                           | 0.0                                  |  |
| 2005 | 461                           | 270                                  | 461                           | 270                                  | 0.0                           | 0.0                                  |  |
| 2006 | 454                           | 271                                  | 443                           | 271                                  | -2.3                          | 0.0                                  |  |
| 2007 | 447                           | 273                                  | 441                           | 273                                  | -1.4                          | 0.0                                  |  |
| 2008 | 440                           | 274                                  | 436                           | 274                                  | -1.0                          | 0.0                                  |  |
| 2009 | 433                           | 275                                  | 429                           | 275                                  | -0.9                          | 0.0                                  |  |
| 2010 | 426                           | 276                                  | 423                           | 276                                  | -0.9                          | 0.0                                  |  |
| 2015 | 396                           | 279                                  | 391                           | 279                                  | -1.3                          | 0.0                                  |  |
| 2020 | 370                           | 281                                  | 364                           | 281                                  | -1.8                          | 0.0                                  |  |
| 2025 | 351                           | 282                                  | 343                           | 282                                  | -2.2                          | 0.0                                  |  |
| 2030 | 337                           | 282                                  | 328                           | 282                                  | -2.6                          | 0.0                                  |  |
| 2035 | 324                           | 280                                  | 315                           | 280                                  | -2.8                          | 0.0                                  |  |

Die in dieser Tabelle zusammengefassten Daten werden sich allerdings noch etwas ändern, insbesondere für Szenario Ib; hier soll der Effekt der CO2-Abgabe nach den neusten Rechnungen von CEPE etwa doppelt so gross sein, wie hier ausgewiesen. Sobald die neuen Daten vorliegen, wird Basics das Szenario Ib mit allen Sensitivitätsvarianten nochmals vollständig durchrechnen.

#### 2.7.2 Klima hoch

Die in Tabelle 2-21 zusammengefassten Daten zeigen, wie sich die Energiekennzahlen Wärme und Elektrizität mit der unterstellten Klimaerwärmung verändern sollten. Auch hier werden von CEPE neue Rechenresultate angekündigt, die sich allerdings nur wenig von den hier wiedergegebenen unterscheiden sollten (Mitteilung vom 26. 7. 05).

Abb. 2-21: Energiekennzahlen Wärme und Elektrizität für Büros gemäss CEPE (Stand 29.6.05; provisorische Umlegung auf Ib durch Basics)

|      | Ia                            | Ia                                   | Ib                            | Ib                                   | Different                     | z Ib zu Ia                           |
|------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|
| Jahr | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität | Energiekenn-<br>zahl<br>Wärme | Energiekenn-<br>zahl<br>Elektrizität |
|      | (MJ/m2)                       | (MJ/m2)                              | (MJ/m2)                       | (MJ/m2)                              | (%)                           | (%)                                  |
| 1990 | 578                           | 235                                  | 578                           | 235                                  | 0.0                           | 0.0                                  |
| 1995 | 529                           | 247                                  | 529                           | 247                                  | 0.0                           | 0.0                                  |
| 2000 | 496                           | 260                                  | 496                           | 260                                  | 0.0                           | 0.0                                  |
| 2005 | 461                           | 270                                  | 461                           | 270                                  | 0.0                           | 0.0                                  |
| 2006 | 452                           | 274                                  | 441                           | 274                                  | -2.4                          | 0.0                                  |
| 2007 | 443                           | 278                                  | 437                           | 278                                  | -1.3                          | 0.0                                  |
| 2008 | 434                           | 282                                  | 430                           | 282                                  | -0.9                          | 0.0                                  |
| 2009 | 425                           | 286                                  | 421                           | 286                                  | -0.9                          | 0.0                                  |
| 2010 | 417                           | 289                                  | 414                           | 289                                  | -0.7                          | 0.0                                  |
| 2015 | 379                           | 295                                  | 374                           | 295                                  | -1.3                          | 0.0                                  |
| 2020 | 346                           | 309                                  | 340                           | 309                                  | -1.6                          | 0.0                                  |
| 2025 | 320                           | 322                                  | 313                           | 322                                  | -2.3                          | 0.0                                  |
| 2030 | 300                           | 340                                  | 292                           | 340                                  | -2.7                          | 0.0                                  |
| 2035 | 280                           | 356                                  | 272                           | 356                                  | -2.8                          | 0.0                                  |

#### 3 Resultate

# 3.1 Produktionsorientierte Hochrechnungsfaktoren

Ein zentraler Ergebnisteil der Modellierung liegt in den künftigen Hochrechnungsfaktoren, welche zum Ausdruck bringen, was die Industrie effektiv produziert. Dabei wird zwischen den Szenarien Ia und Ib kein Unterschied gemacht, wohl aber natürlich zwischen Trend und BIP hoch.

#### 3.1.1 Trend

Tabelle 3-1 gibt eine Gesamtübersicht über die passend zu den Wertschöpfungsvorgaben prognostizierten Hochrechnungsfaktoren. Die Werte für die Jahre 1990 bis 2003 sind jeweils die effektiven Daten<sup>6</sup>.

Die in Tabelle 3-1 wiedergegebenen und in den Szenariorechnungen verwendeten Daten repräsentieren in etwa den Stand per Ende September 2004. Zwischenzeitlich haben sich durch die Verfügbarkeit neuer Daten (BFS) kleine rückwirkende Korrekturen ergeben, die in der energetischen Projektion aber nur geringe Veränderungen mit sich bringen. Die Schlussberichterstattung wird die dannzumal neusten Daten beinhalten.

Tab. 3-1: Produktionsorientierte Hochrechnungsfaktoren (1990 bis 2003 Statistik, ab 2004 Fortschreibung passend zur Wertschöpfungs- und Beschäftigten-Entwicklung; Quelle: Basics)

| Nr. | Hochrechnungsfaktor  | Dimension | 1990  | 1995  | 2000  | 2005  | 2015  | 2025  | 2035  |
|-----|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|
| 1   | Bier                 | Mio hl    | 4.170 | 3.730 | 3.614 | 3.415 | 2.863 | 2.521 | 2.243 |
| 1   | Schokolade           | Mio t     | 0.109 | 0.128 | 0.138 | 0.149 | 0.179 | 0.198 | 0.213 |
| 1   | Zucker               | Mio t     | 0.142 | 0.129 | 0.219 | 0.200 | 0.200 | 0.200 | 0.200 |
| 1   | Nahrungsmittel Rest  | PI        | 100   | 100   | 94    | 86    | 73    | 65    | 59    |
| 2   | Textil               | PI        | 104   | 100   | 85    | 61    | 69    | 74    | 76    |
| 2   | Bekleidung, Schuhe   | PI        | 145   | 100   | 90    | 79    | 82    | 83    | 81    |
| 3   | Zellstoff            | Mio t     | 0.122 | 0.120 | 0.126 | 0.138 | 0.135 | 0.121 | 0.104 |
| 3   | Papier und Karton    | Mio t     | 1.513 | 1.434 | 1.780 | 1.926 | 2.247 | 2.381 | 2.454 |
| 3   | andere Papierwaren   | PI        | 96    | 100   | 105   | 87    | 93    | 95    | 93    |
| 4   | Chem. Grundstoffe    | MI        | 89    | 100   | 129   | 140   | 153   | 165   | 182   |
| 4   | Pharma               | MI        | 76    | 100   | 116   | 146   | 160   | 174   | 192   |
| 4   | übrige Chemie        | MI        | 88    | 100   | 124   | 126   | 135   | 143   | 155   |
| 4   | Chemiefaser          | Mio t     | 0.121 | 0.124 | 0.079 | 0.055 | 0.058 | 0.059 | 0.057 |
| 5   | Glas-Herstellung     | Mio t     | 0.270 | 0.201 | 0.199 | 0.185 | 0.198 | 0.200 | 0.196 |
| 5   | Glas-Verarbeitung    | PI        | 122   | 100   | 128   | 151   | 160   | 162   | 160   |
| 6   | Ziegel, Backsteine   | Mio t     | 1.304 | 1.205 | 0.856 | 0.782 | 0.972 | 1.057 | 1.107 |
| 6   | Keramik              | PI        | 122   | 100   | 128   | 151   | 157   | 158   | 157   |
| 7   | Zement               | Mio t     | 5.180 | 3.995 | 3.716 | 3.822 | 4.122 | 4.170 | 4.098 |
| 8   | NE-Mineralien        | PI        | 122   | 100   | 128   | 151   | 157   | 158   | 157   |
| 9   | Metallbearbeitung    | PI        | 117   | 100   | 124   | 118   | 128   | 130   | 127   |
| 9   | Stahl                | Mio t     | 1.131 | 0.758 | 1.011 | 1.178 | 1.274 | 1.294 | 1.265 |
| 10  | Rohaluminium         | Mio t     | 0.072 | 0.021 | 0.036 | 0.045 | 0.049 | 0.050 | 0.049 |
| 10  | Halbzeuge            | Mio t     | 0.177 | 0.169 | 0.189 | 0.193 | 0.209 | 0.212 | 0.207 |
| 10  | Alufolie             | Mio t     | 0.015 | 0.024 | 0.025 | 0.028 | 0.036 | 0.038 | 0.035 |
| 11  | Metallerzeugnisse    | PI        | 103   | 100   | 123   | 125   | 151   | 156   | 149   |
| 12  | Maschinen            | PI        | 96    | 100   | 123   | 106   | 122   | 129   | 132   |
| 13  | Geräte               | PI        | 97    | 100   | 125   | 108   | 120   | 127   | 129   |
| 14  | Energie, Wasser      | PI        | 90    | 100   | 108   | 115   | 134   | 145   | 155   |
| 15  | Bau                  | Index*    | 115   | 100   | 90    | 99    | 109   | 113   | 116   |
| 16  | Druck                | PI        | 95    | 100   | 125   | 118   | 150   | 170   | 186   |
| 16  | Kautschuk/Kunststoff | PI        | 107   | 100   | 115   | 120   | 133   | 138   | 140   |
| 16  | Rest                 | PI        | 101   | 100   | 111   | 99    | 114   | 122   | 126   |
| 16  | Holzbearbeitung      | PI        | 110   | 100   | 112   | 110   | 115   | 117   | 118   |

PI = Produktionsindex (im Sinne des BFS)

MI = Mengenindex

In den Abbildungen 3-2 bis 3-9 werden die Resultate für Bier, Papier, Chemie (Grundstoffe und Pharma), Chemiefaser, Zement, Stahl und den Maschinenbau grafisch dargestellt.

Die wichtigsten ökonometrischen "Treiber" für die Hochrechnungsfaktoren stellen die nach Branchen differenzierten Wertschöpfungsvorgaben dar. Die Resultate passen in der Regel recht gut zu den von Branchenvertretern geäusserten kurzfristigen Aussichten. Es gibt aber Ausnahmen, auf die wir aber erst in der ausführlichen Berichterstattung näher eingehen werden.

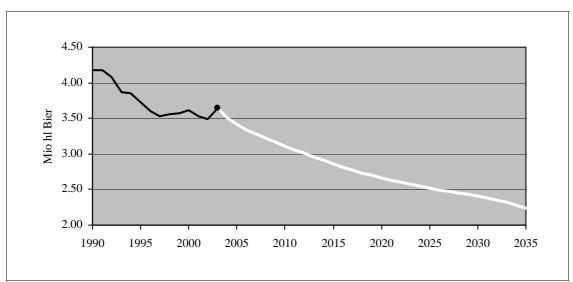
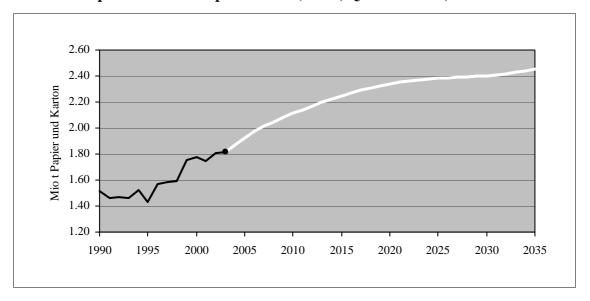
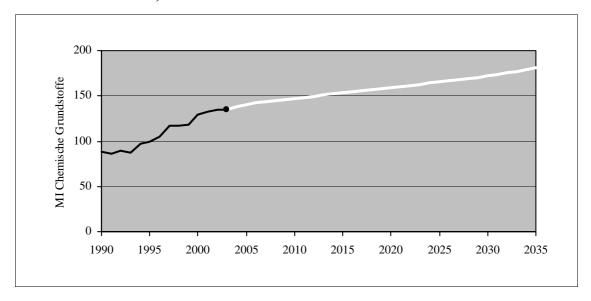





Abb. 3-2: Bierproduktion (Mio hl; Quelle: Basics)





**Abb. 3-4:** Produktion chemischer Grundstoffe (Mengenindex; 1995 = 100; Quelle: Basics)



**Abb. 3-5:** Pharmaproduktion (Mengenindex; 1995 = 100; Quelle: Basics)

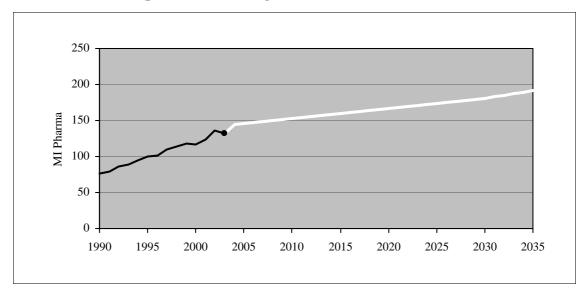



Abb. 3-6: Chemiefaser (Mio t; Quelle: Basics)

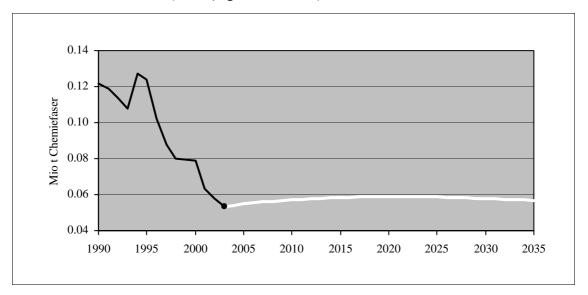
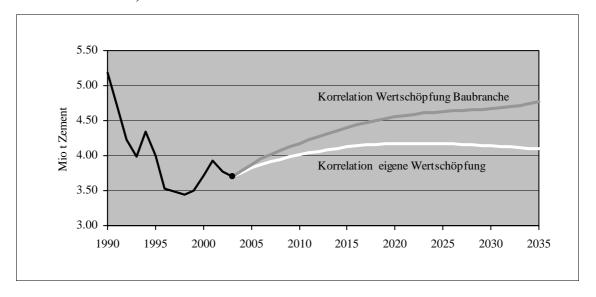




Abb. 3-7: Zementproduktion (Mio t; für die Perspektivrechnungen wurde die Korrelation mit der eigenen Wertschöpfung zu Grunde gelegt; Quelle: Basics)



**Abb. 3-8:** Stahlproduktion (Mio t; Quelle: Basics)

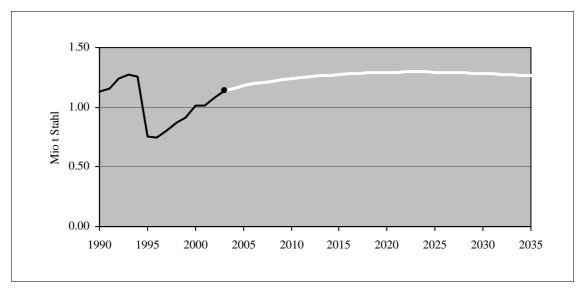
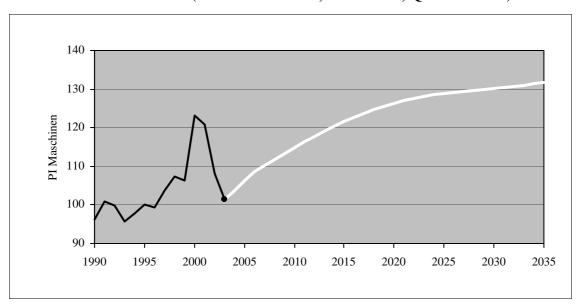




Abb. 3-9: Maschinenbau (Produktionsindex; 1995 = 100; Quelle: Basics)



In der detaillierten Schlussberichterstattung werden die Branchen bzw. sämtliche Hochrechnungsfaktoren im Einzelnen diskutiert werden. Im Vorgriff auf diese Diskussion beachte man, dass hier durchaus sehr konventionell in die Zukunft geschaut wird. Dies sei am Beispiel der Papierproduktion kurz angeschnitten. Wir gehen davon aus, dass die der Papierindustrie zugeschriebenen Wertschöpfung tatsächlich in Form von "gewöhnlicher" Papierproduktion entsteht und nicht etwa durch die Produktion von elektronischem Papier (welches bis 2035 durchaus einen relevanten Marktanteil erreichen könnte).

## 3.1.2 BIP hoch

In Tabelle 3-10 sind die Hochrechnungsfaktoren zusammengestellt, wie sie sich modellmässig unter Berücksichtigung von einigen "Handkorrekturen" für die höhere BIP-Variante ergeben.

Tab. 3-10: Produktionsorientierte Hochrechnungsfaktoren (1990 bis 2003 Statistik, ab 2004 Fortschreibung passend zur Wertschöpfungs- und Beschäftigten-Entwicklung; Quelle: Basics)

| Nr. | Hochrechnungsfaktor  | Dimension | 1990  | 1995  | 2000  | 2005  | 2015  | 2025  | 2035  |
|-----|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|
| 1   | Bier                 | Mio hl    | 4.170 | 3.730 | 3.614 | 3.415 | 2.751 | 2.273 | 1.838 |
| 1   | Schokolade           | Mio t     | 0.109 | 0.128 | 0.138 | 0.149 | 0.191 | 0.225 | 0.257 |
| 1   | Zucker               | Mio t     | 0.142 | 0.129 | 0.219 | 0.200 | 0.200 | 0.200 | 0.200 |
| 1   | Nahrungsmittel Rest  | PI        | 100   | 100   | 94    | 86    | 76    | 71    | 68    |
| 2   | Textil               | PI        | 104   | 100   | 85    | 61    | 73    | 81    | 89    |
| 2   | Bekleidung, Schuhe   | PI        | 145   | 100   | 90    | 79    | 85    | 89    | 90    |
| 3   | Zellstoff            | Mio t     | 0.122 | 0.120 | 0.126 | 0.138 | 0.130 | 0.112 | 0.094 |
| 3   | Papier und Karton    | Mio t     | 1.513 | 1.434 | 1.780 | 1.926 | 2.160 | 2.215 | 2.212 |
| 3   | andere Papierwaren   | PI        | 96    | 100   | 105   | 70    | 99    | 106   | 111   |
| 4   | Chem. Grundstoffe    | MI        | 89    | 100   | 129   | 140   | 155   | 169   | 188   |
| 4   | Pharma               | MI        | 76    | 100   | 116   | 146   | 162   | 178   | 199   |
| 4   | übrige Chemie        | MI        | 88    | 100   | 124   | 126   | 136   | 146   | 159   |
| 4   | Chemiefaser          | Mio t     | 0.121 | 0.124 | 0.079 | 0.055 | 0.061 | 0.065 | 0.066 |
| 5   | Glas-Herstellung     | Mio t     | 0.270 | 0.201 | 0.199 | 0.185 | 0.215 | 0.236 | 0.253 |
| 5   | Glas-Verarbeitung    | PI        | 122   | 100   | 128   | 151   | 174   | 190   | 202   |
| 6   | Ziegel, Backsteine   | Mio t     | 1.304 | 1.205 | 0.856 | 0.782 | 1.037 | 1.197 | 1.333 |
| 6   | Keramik              | PI        | 122   | 100   | 128   | 151   | 165   | 175   | 183   |
| 7   | Zement               | Mio t     | 5.180 | 3.995 | 3.716 | 3.822 | 4.224 | 4.382 | 4.423 |
| 8   | NE-Mineralien        | PI        | 122   | 100   | 128   | 151   | 165   | 175   | 183   |
| 9   | Metallbearbeitung    | PI        | 117   | 100   | 124   | 118   | 137   | 149   | 156   |
| 9   | Stahl                | Mio t     | 1.131 | 0.758 | 1.011 | 1.178 | 1.364 | 1.483 | 1.554 |
| 10  | Rohaluminium         | Mio t     | 0.072 | 0.021 | 0.036 | 0.045 | 0.052 | 0.057 | 0.060 |
| 10  | Halbzeuge            | Mio t     | 0.177 | 0.169 | 0.189 | 0.193 | 0.223 | 0.243 | 0.254 |
| 10  | Alufolie             | Mio t     | 0.015 | 0.024 | 0.025 | 0.028 | 0.044 | 0.055 | 0.062 |
| 11  | Metallerzeugnisse    | PI        | 103   | 100   | 123   | 125   | 163   | 182   | 188   |
| 12  | Maschinen            | PI        | 96    | 100   | 123   | 106   | 129   | 145   | 158   |
| 13  | Geräte               | PI        | 97    | 100   | 125   | 108   | 127   | 142   | 153   |
| 14  | Energie, Wasser      | PI        | 90    | 100   | 108   | 115   | 141   | 162   | 182   |
| 15  | Bau                  | Index*    | 115   | 100   | 90    | 99    | 116   | 129   | 142   |
| 16  | Druck                | PI        | 95    | 100   | 125   | 99    | 116   | 129   | 142   |
| 16  | Kautschuk/Kunststoff | PI        | 107   | 100   | 115   | 118   | 163   | 198   | 232   |
| 16  | Rest                 | PI        | 101   | 100   | 111   | 120   | 140   | 153   | 165   |
| 16  | Holzbearbeitung      | PI        | 110   | 100   | 112   | 99    | 122   | 139   | 153   |

Wenn man die obigen Daten mit dem Trendfall vergleicht, so ergeben sich nicht in jedem Fall gleichsinnige Differenzen, das heisst Differenzen vom Typ "mehr Wertschöpfung = mehr (physische) Produktion". Etwa bei der Papierindustrie: Hier wird davon ausgegangen, dass sich die höhere Wertschöpfung nicht in einem mehr an klassischer Papierproduktion niederschlägt, sondern in qualitativ höherwertigem Papier (Details im Schlussbericht) bei gesamthaft kleinerer Produktion. Interessant ist in diesem Zusammenhang auch die Chemie: Die physische Produktionsausweitung durch die höhere Wertschöpfung ist weit unterproportional (im Sinne von Elastizitäten).

# 3.2 Flächenbezogene Hochrechnungsfaktoren

Die Aufteilung der mehr oder weniger vorgegebenen Energiebezugsflächen auf die verschiedenen Nutzungskategorien, Branchen und ihre Aufteilung in Büro und Produktion ist ebenfalls ein Modellresultat. Diese Aufteilung hängt unter anderem von den produktionsbezogenen Hochrechnungsfaktoren ab. So wird beispielsweise eine schrumpfende Produktion auch quadratmetermässig abgebildet.

### 3.2.1 Trend

Tabelle 3-11 zeigt die resultierenden Energiebezugsflächen für die Industrie (inkl. Leerflächen). Die "nichtverwendeten Flächen" stehen für Umnutzungen zur Verfügung. Sie kommen gewissermassen in unserer Buchhaltung nicht vor und werden auch nicht beheizt. Die Leerflächen werden in den Büros voll beheizt (Vollbeheizungsäquivalent 100 Prozent), in der Produktion nur zum Teil oder gar nicht (Vollbeheizungsäquivalent je nach Branche und Zeitpunkt zwischen 90 und 98 Prozent dar angegebenen Flächen).

Die Aufteilung der Flächenvorgabe von Wüest & Partner auf die erwähnten Nutzungsarten ist in Abbildung 3-12 dargestellt.

Tab. 3-11 Energiebezugsflächen nach Branchen, aufgeteilt in Produktion (P) und Büro (B) in Mio m2 (z. T. nur teilbeheizt; Quelle: Basics)

| Nr. | Branche           |       | 1990  | 1995  | 2000  | 2005  | 2015  | 2025  | 2035   |
|-----|-------------------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1   | Nahrung           | P     | 7.89  | 7.98  | 7.91  | 8.00  | 8.66  | 9.19  | 9.54   |
|     |                   | В     | 0.72  | 0.70  | 0.74  | 0.68  | 0.61  | 0.53  | 0.44   |
| 2   | Bekleidung        | P     | 3.74  | 3.77  | 3.73  | 3.76  | 4.15  | 4.44  | 4.63   |
|     |                   | В     | 0.37  | 0.29  | 0.22  | 0.21  | 0.22  | 0.21  | 0.20   |
| 3   | Papierindustrie   | P     | 1.93  | 1.94  | 1.95  | 1.96  | 2.17  | 2.32  | 2.42   |
|     |                   | В     | 0.15  | 0.16  | 0.16  | 0.16  | 0.16  | 0.15  | 0.13   |
| 4   | Chemie            | P     | 4.53  | 4.60  | 4.56  | 4.62  | 5.09  | 5.47  | 5.75   |
|     |                   | В     | 1.18  | 1.09  | 1.11  | 1.14  | 1.18  | 1.19  | 1.24   |
| 5   | Glas              | P     | 0.50  | 0.50  | 0.51  | 0.52  | 0.58  | 0.61  | 0.64   |
|     |                   | В     | 0.04  | 0.04  | 0.04  | 0.03  | 0.03  | 0.03  | 0.03   |
| 6   | Keramik           | P     | 0.52  | 0.53  | 0.52  | 0.53  | 0.59  | 0.63  | 0.65   |
|     |                   | В     | 0.04  | 0.04  | 0.04  | 0.03  | 0.03  | 0.03  | 0.03   |
| 7   | Zement            | P     | 0.15  | 0.15  | 0.15  | 0.15  | 0.17  | 0.18  | 0.19   |
|     |                   | В     | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01   |
| 8   | Mineralien        | P     | 1.34  | 1.35  | 1.39  | 1.44  | 1.58  | 1.68  | 1.75   |
|     |                   | В     | 0.11  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.08   |
| 9   | Metalle           | P     | 0.58  | 0.59  | 0.59  | 0.60  | 0.66  | 0.71  | 0.74   |
|     |                   | В     | 0.13  | 0.11  | 0.12  | 0.12  | 0.12  | 0.11  | 0.10   |
| 10  | NE-Metalle        | P     | 0.30  | 0.30  | 0.30  | 0.31  | 0.34  | 0.36  | 0.38   |
|     |                   | В     | 0.07  | 0.05  | 0.06  | 0.06  | 0.06  | 0.06  | 0.05   |
| 11  | Metallerzeugnisse | P     | 4.95  | 5.01  | 5.06  | 5.15  | 5.76  | 6.17  | 6.41   |
|     |                   | В     | 0.81  | 0.85  | 0.89  | 0.90  | 0.91  | 0.86  | 0.78   |
| 12  | Maschinenbau      | P     | 8.55  | 8.67  | 8.61  | 8.68  | 9.65  | 10.36 | 10.82  |
|     |                   | В     | 1.84  | 1.61  | 1.80  | 1.82  | 1.94  | 1.91  | 1.80   |
| 13  | Geräte            | P     | 9.22  | 9.33  | 9.45  | 9.57  | 10.59 | 11.36 | 11.87  |
|     |                   | В     | 1.94  | 1.79  | 1.91  | 1.98  | 2.07  | 2.02  | 1.90   |
| 14  | Energie           | P     | 1.29  | 1.31  | 1.31  | 1.33  | 1.48  | 1.60  | 1.68   |
|     |                   | В     | 0.43  | 0.45  | 0.46  | 0.42  | 0.41  | 0.38  | 0.35   |
| 15  | Bau               | P     | 3.57  | 3.60  | 3.58  | 3.65  | 4.03  | 4.31  | 4.51   |
|     |                   | В     | 2.40  | 2.33  | 2.33  | 2.31  | 2.40  | 2.33  | 2.20   |
| 16  | Übrige            | P     | 9.43  | 9.54  | 9.58  | 9.69  | 10.79 | 11.62 | 12.20  |
|     | •                 | В     | 1.71  | 1.56  | 1.57  | 1.56  | 1.63  | 1.59  | 1.50   |
|     | Total Basics      | P     | 58.49 | 59.18 | 59.20 | 59.96 | 66.30 | 71.01 | 74.17  |
|     |                   | В     | 11.95 | 11.17 | 11.56 | 11.52 | 11.87 | 11.50 | 10.84  |
|     | Nicht verwendet   |       | 3.88  | 10.30 | 11.63 | 13.11 | 13.88 | 15.41 | 16.64  |
|     | Total W&P         | Total | 74.32 | 80.65 | 82.39 | 84.59 | 92.05 | 97.92 | 101.65 |

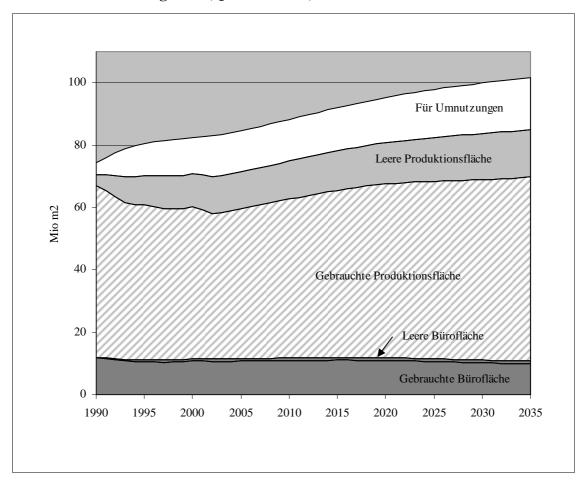



Abb. 3-12: Aufteilung der Gesamtfläche auf die verschiedenen Nutzungsarten bzw. -kategorien (Quelle: Basics)

#### 3.2.2 BIP hoch

Gegenüber der Trendvariante ergeben sich in der Variante BIP hoch für die Energiebezugsflächen nur relativ geringe Unterschiede. Im Jahr 2035 ist die gesamte Energiebezugsfläche rund 2.2 Mio m² grösser als im Trendfall. Da von Seiten Wüest & Partner der Industrie aber rund 2.6 Mio m² zusätzlich zugeschrieben werden, nimmt per saldo die für Umnutzungen zur Verfügung stehende Fläche um rund 0.4 Mio m² zu. Dies ist aber nicht unplausibel, in dem es für expandierende Industrien oft einfacher ist, Produktionsflächen neu zu bauen als bestehende umzubauen.

Tab. 3-13 Energiebezugsflächen nach Branchen, aufgeteilt in Produktion (P) und Büro (B) in Mio  $m^2$  (z.T. nur teilbeheizt; Quelle: Basics)

| Nr. | Branche           |       | 1990  | 1995  | 2000  | 2005  | 2015  | 2025  | 2035   |
|-----|-------------------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1   | Nahrung           | P     | 7.89  | 7.98  | 7.91  | 8.00  | 8.65  | 9.21  | 9.63   |
|     |                   | В     | 0.72  | 0.70  | 0.74  | 0.68  | 0.60  | 0.52  | 0.42   |
| 2   | Bekleidung        | P     | 3.74  | 3.77  | 3.73  | 3.76  | 4.17  | 4.49  | 4.74   |
|     |                   | В     | 0.37  | 0.29  | 0.22  | 0.21  | 0.22  | 0.22  | 0.20   |
| 3   | Papierindustrie   | P     | 1.93  | 1.94  | 1.95  | 1.96  | 2.18  | 2.34  | 2.46   |
|     |                   | В     | 0.15  | 0.16  | 0.16  | 0.16  | 0.16  | 0.15  | 0.13   |
| 4   | Chemie            | P     | 4.53  | 4.60  | 4.56  | 4.62  | 5.09  | 5.49  | 5.83   |
|     |                   | В     | 1.18  | 1.09  | 1.11  | 1.14  | 1.15  | 1.13  | 1.16   |
| 5   | Glas              | P     | 0.50  | 0.50  | 0.51  | 0.52  | 0.58  | 0.63  | 0.66   |
|     |                   | В     | 0.04  | 0.04  | 0.04  | 0.03  | 0.04  | 0.03  | 0.03   |
| 6   | Keramik           | P     | 0.52  | 0.53  | 0.52  | 0.53  | 0.59  | 0.64  | 0.67   |
|     |                   | В     | 0.04  | 0.04  | 0.04  | 0.03  | 0.04  | 0.03  | 0.03   |
| 7   | Zement            | P     | 0.15  | 0.15  | 0.15  | 0.15  | 0.17  | 0.18  | 0.19   |
|     |                   | В     | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01   |
| 8   | Mineralien        | P     | 1.34  | 1.35  | 1.39  | 1.44  | 1.59  | 1.71  | 1.80   |
|     |                   | В     | 0.11  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.08   |
| 9   | Metalle           | P     | 0.58  | 0.59  | 0.59  | 0.60  | 0.67  | 0.72  | 0.76   |
|     |                   | В     | 0.13  | 0.11  | 0.12  | 0.12  | 0.12  | 0.11  | 0.10   |
| 10  | NE-Metalle        | P     | 0.30  | 0.30  | 0.30  | 0.31  | 0.34  | 0.37  | 0.39   |
|     |                   | В     | 0.07  | 0.05  | 0.06  | 0.06  | 0.06  | 0.06  | 0.05   |
| 11  | Metallerzeugnisse | P     | 4.95  | 5.01  | 5.06  | 5.15  | 5.81  | 6.30  | 6.62   |
|     |                   | В     | 0.81  | 0.85  | 0.89  | 0.90  | 0.92  | 0.87  | 0.80   |
| 12  | Maschinenbau      | P     | 8.55  | 8.67  | 8.61  | 8.68  | 9.70  | 10.52 | 11.15  |
|     |                   | В     | 1.84  | 1.61  | 1.80  | 1.82  | 1.94  | 1.92  | 1.83   |
| 13  | Geräte            | P     | 9.22  | 9.33  | 9.45  | 9.57  | 10.65 | 11.53 | 12.21  |
|     |                   | В     | 1.94  | 1.79  | 1.91  | 1.98  | 2.07  | 2.04  | 1.94   |
| 14  | Energie           | P     | 1.29  | 1.31  | 1.31  | 1.33  | 1.49  | 1.62  | 1.73   |
|     | -                 | В     | 0.43  | 0.45  | 0.46  | 0.42  | 0.41  | 0.38  | 0.34   |
| 15  | Bau               | P     | 3.57  | 3.60  | 3.58  | 3.65  | 4.06  | 4.39  | 4.66   |
|     |                   | В     | 2.40  | 2.33  | 2.33  | 2.31  | 2.48  | 2.49  | 2.46   |
| 16  | Übrige            | P     | 9.43  | 9.54  | 9.58  | 9.69  | 10.86 | 11.82 | 12.58  |
|     | •                 | В     | 1.71  | 1.56  | 1.57  | 1.56  | 1.63  | 1.60  | 1.52   |
|     | Total Basics      | P     | 58.49 | 59.18 | 59.20 | 59.96 | 66.60 | 71.97 | 76.09  |
|     |                   | В     | 11.95 | 11.17 | 11.56 | 11.52 | 11.93 | 11.65 | 11.12  |
|     | Nicht verwendet   |       | 3.88  | 10.30 | 11.63 | 13.11 | 13.95 | 15.62 | 17.08  |
|     | Total W&P         | Total | 74.32 | 80.65 | 82.39 | 84.59 | 92.48 | 99.24 | 104.29 |

# 3.3 Energieverbrauch Szenario la

Für das Szenario hoch wurden bislang vier Varianten durchgerechnet: Trend; BIP hoch, Preise hoch, Klima hoch. Wir besprechen diese in der Folge wie folgt:

Die Trendvariante wird relativ ausführlich besprochen, die übrigen Varianten nur im Hinblick auf die wichtigste Unterschiede zum Trendfall.

#### 3.3.1 Trend

Abbildung 3-14 zeigt den gesamthaft resultierenden Energieverbrauch (klimanormiert, d.h. von 1990 bis 2035 auf die durchschnittliche Witterung von 1970 bis 1992 bezogen): Dieser steigt bis etwa 2020 noch leicht an, um dann wieder leicht zu sinken. Gemessen an der industriellen Wertschöpfung ergibt sich alles über alles für den Zeitraum von 1990 bis 2035 eine spezifische Verbesserung von rund 15 Prozent.

In den Tabellen 3-15 bis 3-19 werden für die Stichjahre 1990, 2003, 2010, 2020 und 2035 die Energieverbräuche nach Branchen und Energieträgern dargestellt.

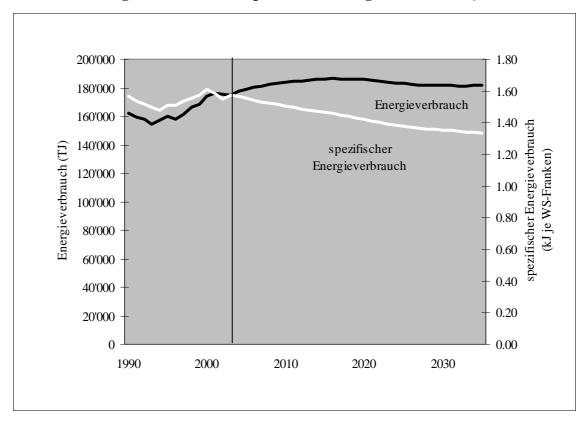



Abb. 3-14: Energieverbrauch und spezifischer Energieverbrauch (Quelle: Basics)

Dabei ist die Verbuchung der Energieverbräuche im Sinne eines Endverbrauchs aber nicht ganz korrekt. So wird der "Verbrauch" der (neuen) erneuerbaren Energieträger additiv mit einbezogen, wie auch die gesamte Inputenergie für die

thermische Eigenproduktion von Elektrizität (die Nahwärmeproduktion ist korrekt verbucht). In einer konsequenten Endenergiebuchhaltung wäre der Energieverbrauch 2003 etwa 2 PJ, 2035 etwa 3 PJ tiefer.

Tab. 3-15: Klimanormierter Energieverbrauch des Jahres 1990 nach Branchen (in TJ; Quellen: BFE, BFS, Basics)

| Branchen-Nr. | HEL    | GAS    | ELEKT  | NAH_FERN | HOLZ   | KOHLE   |
|--------------|--------|--------|--------|----------|--------|---------|
| 1            | 4'650  | 986    | 4'370  | 193      | 0      | 240     |
| 2            | 1'233  | 386    | 4'785  | 330      | 16     | 28      |
| 3            | 428    | 2'703  | 5'583  | 1'263    | 0      | 1'085   |
| 4            | 3'389  | 11'264 | 11'312 | 336      | 0      | 108     |
| 5            | 234    | 362    | 1'249  | 0        | 0      | 0       |
| 6            | 821    | 482    | 461    | 0        | 0      | 0       |
| 7            | 89     | 174    | 1'831  | 0        | 0      | 11'630  |
| 8            | 1'599  | 115    | 255    | 0        | 0      | 0       |
| 9            | 711    | 1'569  | 5'866  | 42       | 0      | 267     |
| 10           | 210    | 241    | 5'485  | 0        | 0      | 0       |
| 11           | 1'501  | 270    | 2'058  | 263      | 0      | 94      |
| 12           | 3'294  | 567    | 3'847  | 571      | 0      | 202     |
| 13           | 2'926  | 835    | 3'024  | 140      | 35     | 12      |
| 14           | 348    | 51     | 1'349  | 0        | 0      | 0       |
| 15           | 2'027  | 153    | 4'386  | 167      | 80     | 0       |
| 16           | 3'581  | 504    | 6'328  | 153      | 3'672  | 33      |
| Total        | 27'041 | 20'663 | 62'189 | 3'457    | 3'803  | 13'699  |
| Branchen-Nr. | ERNEU  | HMS    | ABFALL | PETRK    | UEBGAS | Total   |
| 1            | 16     | 1'185  | 43     | 217      | 108    | 11'943  |
| 2            | 8      | 847    | 11     | 0        | 416    | 8'041   |
| 3            | 4      | 5'239  | 1966   | 0        | 43     | 18'358  |
| 4            | 12     | 1'862  | 2654   | 126      | 8      | 31'140  |
| 5            | 1      | 4'356  | 0      | 0        | 675    | 6'878   |
| 6            | 1      | 1'379  | 9      | 0        | 896    | 4'034   |
| 7            | 0      | 1'867  | 1992   | 494      | 15     | 18'169  |
| 8            | 3      | 0      | 0      | 0        | 202    | 2'174   |
| 9            | 1      | 356    | 0      | 241      | 123    | 9'175   |
|              |        |        | 29     |          |        |         |
| 10           | 1      | 2      |        | 0        | 32     | 5'956   |
| 11           | 11     | 506    | 0      | 0        | 342    | 5'045   |
| 12           | 21     | 1'134  | 0      | 175      | 141    | 9'953   |
| 13           | 22     | 196    | 0      | 0        | 948    | 8'137   |
| 14           | 4      | 0      | 0      | 0        | 4      | 1'756   |
| 15           | 14     | 0      | 0      | 0        | 150    | 6'978   |
| 16           | 22     | 125    | 31     | 0        | 40     | 14'440  |
| Total        | 140    | 19'053 | 6'735  | 1'254    | 4'143  | 162'176 |

Tab. 3-16: Klimanormierter Energieverbrauch des Jahres 2003 nach Branchen (in TJ; Quellen: BFE, Basics)

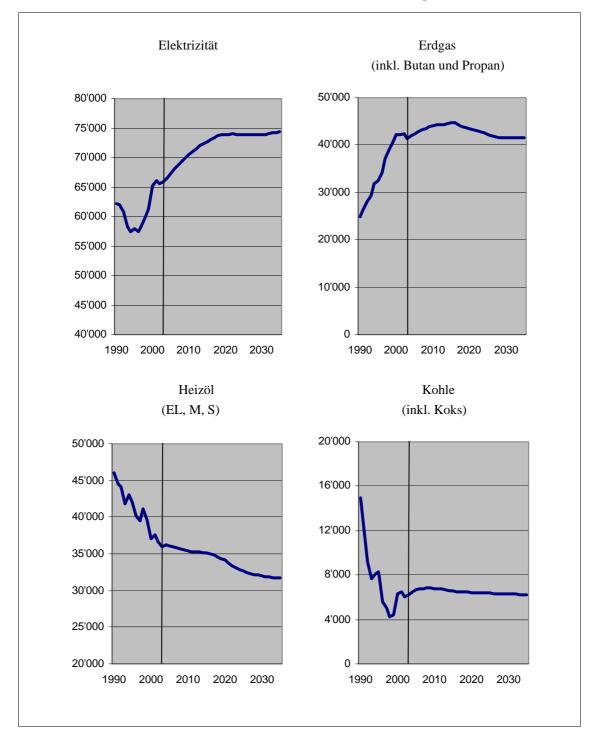
| Branchen-Nr.                                       | HEL                                                             | GAS                                                                         | ELEKT                                                         | NAH_FERN                                                 | HOLZ                                                                            | KOHLE                                                                                                          |
|----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1                                                  | 5'282                                                           | 3'460                                                                       | 4'857                                                         | 259                                                      | 0                                                                               | 206                                                                                                            |
| 2                                                  | 1'101                                                           | 929                                                                         | 3'324                                                         | 245                                                      | 18                                                                              | 28                                                                                                             |
| 3                                                  | 813                                                             | 6'152                                                                       | 6'179                                                         | 3'819                                                    | 0                                                                               | 0                                                                                                              |
| 4                                                  | 3'061                                                           | 11'776                                                                      | 11'864                                                        | 373                                                      | 0                                                                               | 51                                                                                                             |
| 5                                                  | 272                                                             | 976                                                                         | 1'230                                                         | 0                                                        | 0                                                                               | 0                                                                                                              |
| 6                                                  | 951                                                             | 1'445                                                                       | 423                                                           | 0                                                        | 0                                                                               | 0                                                                                                              |
| 7                                                  | 64                                                              | 60                                                                          | 1'315                                                         | 0                                                        | 0                                                                               | 4'679                                                                                                          |
| 8                                                  | 2'527                                                           | 535                                                                         | 358                                                           | 0                                                        | 0                                                                               | 0                                                                                                              |
| 9                                                  | 636                                                             | 2'546                                                                       | 6'907                                                         | 45                                                       | 0                                                                               | 396                                                                                                            |
| 10                                                 | 262                                                             | 902                                                                         | 4'749                                                         | 0                                                        | 0                                                                               | 0                                                                                                              |
| 11                                                 | 1'776                                                           | 927                                                                         | 2'509                                                         | 271                                                      | 0                                                                               | 109                                                                                                            |
| 12                                                 | 3'715                                                           | 1'821                                                                       | 4'575                                                         | 564                                                      | 0                                                                               | 272                                                                                                            |
| 13                                                 | 3'388                                                           | 2'195                                                                       | 3'628                                                         | 141                                                      | 46                                                                              | 15                                                                                                             |
| 14                                                 | 396                                                             | 152                                                                         | 1'886                                                         | 0                                                        | 0                                                                               | 0                                                                                                              |
| 15                                                 | 2'228                                                           | 463                                                                         | 4'470                                                         | 179                                                      | 103                                                                             | 0                                                                                                              |
| 16                                                 | 4'039                                                           | 1'550                                                                       | 7'640                                                         | 151                                                      | 5'555                                                                           | 43                                                                                                             |
| Total                                              | 30'511                                                          | 35'891                                                                      | 65'915                                                        | 6'049                                                    | 5'722                                                                           | 5'799                                                                                                          |
| Branchen-Nr.                                       | ERNEU                                                           | HMS                                                                         | ABFALL                                                        | PETRK                                                    | UEBGAS                                                                          | Total                                                                                                          |
| 1                                                  | 61                                                              | 335                                                                         | 202                                                           | 48                                                       | 152                                                                             | 14'864                                                                                                         |
| 2                                                  | 27                                                              | 1.50                                                                        | 17                                                            | 0                                                        | 412                                                                             | 6'254                                                                                                          |
| 3                                                  | 41                                                              | 153                                                                         | 17                                                            | U                                                        | 413                                                                             | 0 234                                                                                                          |
|                                                    | 15                                                              | 153<br>2'364                                                                | 2'888                                                         | 0                                                        | 128                                                                             | 22'358                                                                                                         |
| 4                                                  |                                                                 |                                                                             |                                                               |                                                          |                                                                                 |                                                                                                                |
|                                                    | 15                                                              | 2'364                                                                       | 2'888                                                         | 0                                                        | 128                                                                             | 22'358                                                                                                         |
| 4                                                  | 15<br>46                                                        | 2'364<br>120                                                                | 2'888<br>4'646                                                | 0<br>31                                                  | 128<br>16                                                                       | 22'358<br>31'986                                                                                               |
| 4<br>5                                             | 15<br>46<br>4                                                   | 2'364<br>120<br>871                                                         | 2'888<br>4'646<br>0                                           | 0<br>31<br>0                                             | 128<br>16<br>692                                                                | 22'358<br>31'986<br>4'045                                                                                      |
| 4<br>5<br>6                                        | 15<br>46<br>4<br>4                                              | 2'364<br>120<br>871<br>229                                                  | 2'888<br>4'646<br>0<br>16                                     | 0<br>31<br>0<br>0                                        | 128<br>16<br>692<br>1'025                                                       | 22'358<br>31'986<br>4'045<br>4'093                                                                             |
| 4<br>5<br>6<br>7                                   | 15<br>46<br>4<br>4<br>1                                         | 2'364<br>120<br>871<br>229<br>670                                           | 2'888<br>4'646<br>0<br>16<br>5'443                            | 0<br>31<br>0<br>0<br>162                                 | 128<br>16<br>692<br>1'025<br>16                                                 | 22'358<br>31'986<br>4'045<br>4'093<br>12'410                                                                   |
| 4<br>5<br>6<br>7<br>8                              | 15<br>46<br>4<br>4<br>1<br>11                                   | 2'364<br>120<br>871<br>229<br>670<br>0                                      | 2'888<br>4'646<br>0<br>16<br>5'443                            | 0<br>31<br>0<br>0<br>162<br>0                            | 128<br>16<br>692<br>1'025<br>16<br>377                                          | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807                                                          |
| 4<br>5<br>6<br>7<br>8<br>9                         | 15<br>46<br>4<br>4<br>1<br>11<br>6                              | 2'364<br>120<br>871<br>229<br>670<br>0                                      | 2'888<br>4'646<br>0<br>16<br>5'443<br>0                       | 0<br>31<br>0<br>0<br>162<br>0<br>93                      | 128<br>16<br>692<br>1'025<br>16<br>377<br>181                                   | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931                                                |
| 4<br>5<br>6<br>7<br>8<br>9                         | 15<br>46<br>4<br>4<br>1<br>11<br>6<br>3                         | 2'364<br>120<br>871<br>229<br>670<br>0<br>121                               | 2'888<br>4'646<br>0<br>16<br>5'443<br>0<br>0                  | 0<br>31<br>0<br>0<br>162<br>0<br>93                      | 128<br>16<br>692<br>1'025<br>16<br>377<br>181<br>47                             | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931<br>6'063                                       |
| 4<br>5<br>6<br>7<br>8<br>9<br>10                   | 15<br>46<br>4<br>4<br>1<br>11<br>6<br>3<br>46                   | 2'364<br>120<br>871<br>229<br>670<br>0<br>121<br>1                          | 2'888<br>4'646<br>0<br>16<br>5'443<br>0<br>0<br>100           | 0<br>31<br>0<br>0<br>162<br>0<br>93<br>0                 | 128<br>16<br>692<br>1'025<br>16<br>377<br>181<br>47<br>547                      | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931<br>6'063<br>6'327                              |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11             | 15<br>46<br>4<br>4<br>1<br>11<br>6<br>3<br>46<br>82             | 2'364<br>120<br>871<br>229<br>670<br>0<br>121<br>1<br>142<br>301            | 2'888<br>4'646<br>0<br>16<br>5'443<br>0<br>0<br>100<br>0      | 0<br>31<br>0<br>0<br>162<br>0<br>93<br>0<br>0            | 128<br>16<br>692<br>1'025<br>16<br>377<br>181<br>47<br>547<br>213               | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931<br>6'063<br>6'327<br>11'607                    |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 15<br>46<br>4<br>4<br>1<br>11<br>6<br>3<br>46<br>82<br>90       | 2'364<br>120<br>871<br>229<br>670<br>0<br>121<br>1<br>142<br>301<br>53      | 2'888<br>4'646<br>0<br>16<br>5'443<br>0<br>0<br>100<br>0      | 0<br>31<br>0<br>0<br>162<br>0<br>93<br>0<br>0<br>63      | 128<br>16<br>692<br>1'025<br>16<br>377<br>181<br>47<br>547<br>213<br>1'270      | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931<br>6'063<br>6'327<br>11'607<br>10'826          |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 15<br>46<br>4<br>4<br>1<br>11<br>6<br>3<br>46<br>82<br>90<br>15 | 2'364<br>120<br>871<br>229<br>670<br>0<br>121<br>1<br>142<br>301<br>53<br>0 | 2'888<br>4'646<br>0<br>16<br>5'443<br>0<br>0<br>100<br>0<br>0 | 0<br>31<br>0<br>0<br>162<br>0<br>93<br>0<br>0<br>63<br>0 | 128<br>16<br>692<br>1'025<br>16<br>377<br>181<br>47<br>547<br>213<br>1'270<br>6 | 22'358<br>31'986<br>4'045<br>4'093<br>12'410<br>3'807<br>10'931<br>6'063<br>6'327<br>11'607<br>10'826<br>2'455 |

Tab. 3-17: Klimanormierter Energieverbrauch im Szenario Ia für das Jahr 2010 nach Branchen (in TJ; Quelle: Basics)

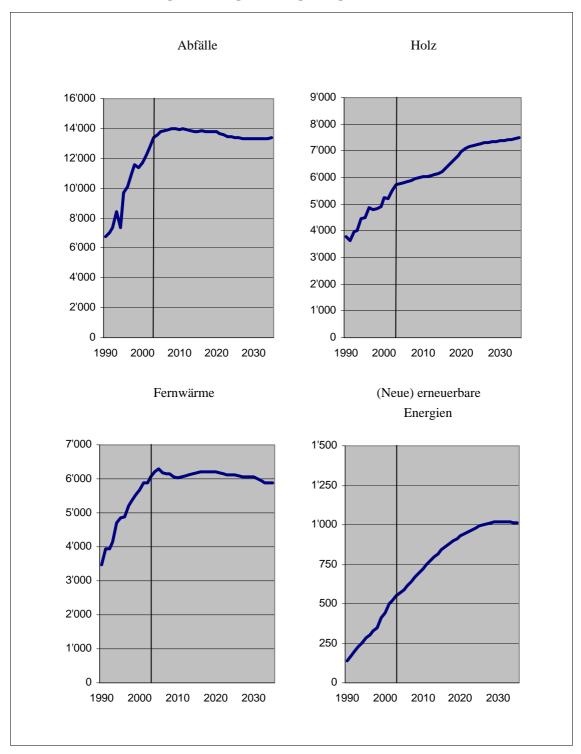
| Branchen-Nr.               | HEL                    | GAS                   | ELEKT            | NAH_FERN          | HOLZ                     | KOHLE                              |
|----------------------------|------------------------|-----------------------|------------------|-------------------|--------------------------|------------------------------------|
| 1                          | 4'786                  | 3'412                 | 4'487            | 277               | 0                        | 206                                |
| 2                          | 1'140                  | 1'040                 | 3'658            | 270               | 19                       | 30                                 |
| 3                          | 856                    | 6'924                 | 7'017            | 3'618             | 0                        | 0                                  |
| 4                          | 3'179                  | 12'696                | 12'662           | 391               | 0                        | 54                                 |
| 5                          | 271                    | 1'007                 | 1'284            | 0                 | 0                        | 0                                  |
| 6                          | 977                    | 1'583                 | 479              | 0                 | 0                        | 0                                  |
| 7                          | 66                     | 65                    | 1'429            | 0                 | 0                        | 4'930                              |
| 8                          | 2'446                  | 541                   | 370              | 0                 | 0                        | 0                                  |
| 9                          | 639                    | 2'669                 | 7'203            | 47                | 0                        | 403                                |
| 10                         | 278                    | 1'055                 | 5'089            | 0                 | 0                        | 0                                  |
| 11                         | 1'775                  | 1'061                 | 2'943            | 296               | 0                        | 113                                |
| 12                         | 3'695                  | 2'009                 | 5'104            | 616               | 0                        | 297                                |
| 13                         | 3'324                  | 2'057                 | 3'953            | 154               | 48                       | 16                                 |
| 14                         | 375                    | 155                   | 2'001            | 0                 | 0                        | 0                                  |
| 15                         | 2'164                  | 489                   | 4'836            | 183               | 103                      | 0                                  |
| 16                         | 3'962                  | 1'651                 | 8'029            | 165               | 5'859                    | 46                                 |
| Total                      | 29'933                 | 38'416                | 70'542           | 6'018             | 6'030                    | 6'093                              |
| Branchen-Nr.               | ERNEU                  | HMS                   | ABFALL           | PETRK             | UEBGAS                   | Total                              |
| 1                          | 79                     | 301                   | 201              | 95                | 151                      | 14'195                             |
| 2                          | 36                     | 161                   | 19               | 0                 | 470                      | 6'842                              |
| 3                          | 20                     | 2'512                 | 2'857            | 0                 | 143                      | 23'947                             |
| 4                          | 60                     | 117                   | 4'877            | 33                | 17                       | 34'087                             |
| 5                          | 5                      | 841                   | 0                | 0                 | 711                      | 4'119                              |
| 6                          | 5                      | 255                   | 18               | 0                 | 1'117                    | 4'434                              |
| 7                          | 2                      | 705                   | 5'735            | 170               | 17                       | 13'119                             |
| 8                          | 14                     | 0                     | 0                | 0                 | 382                      | 3'752                              |
| 9                          | 7                      | 119                   | 0                | 95                | 189                      | 11'371                             |
| ,                          |                        |                       |                  | 0                 | 55                       | 6'604                              |
| 10                         | 4                      | 1                     | 122              | 0                 | 33                       | 0 004                              |
|                            | 4<br>61                | 1<br>125              | 122<br>0         | 0                 | 55<br>646                | 7'019                              |
| 10                         |                        |                       |                  |                   |                          |                                    |
| 10<br>11                   | 61                     | 125                   | 0                | 0                 | 646                      | 7'019                              |
| 10<br>11<br>12             | 61<br>109              | 125<br>264            | 0                | 0<br>70           | 646<br>243               | 7'019<br>12'407                    |
| 10<br>11<br>12<br>13       | 61<br>109<br>119       | 125<br>264<br>45      | 0<br>0<br>0      | 0<br>70<br>0      | 646<br>243<br>1'251      | 7'019<br>12'407<br>10'967          |
| 10<br>11<br>12<br>13<br>14 | 61<br>109<br>119<br>19 | 125<br>264<br>45<br>0 | 0<br>0<br>0<br>0 | 0<br>70<br>0<br>0 | 646<br>243<br>1'251<br>6 | 7'019<br>12'407<br>10'967<br>2'557 |

Tab. 3-18: Klimanormierter Energieverbrauch im Szenario Ia für das Jahr 2020 nach Branchen (in TJ; Quelle: Basics)

| Branchen-Nr.                                                            | HEL                                                                            | GAS                                                                                       | ELEKT                                                                      | NAH_FERN                                                            | HOLZ                                                                                          | KOHLE                                                                                                                             |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                       | 4'321                                                                          | 3'062                                                                                     | 4'171                                                                      | 284                                                                 | 0                                                                                             | 222                                                                                                                               |
| 2                                                                       | 1'079                                                                          | 984                                                                                       | 3'823                                                                      | 257                                                                 | 19                                                                                            | 29                                                                                                                                |
| 3                                                                       | 898                                                                            | 7'327                                                                                     | 7'544                                                                      | 3'818                                                               | 0                                                                                             | 0                                                                                                                                 |
| 4                                                                       | 3'265                                                                          | 12'601                                                                                    | 13'343                                                                     | 390                                                                 | 0                                                                                             | 54                                                                                                                                |
| 5                                                                       | 262                                                                            | 928                                                                                       | 1'310                                                                      | 0                                                                   | 0                                                                                             | 0                                                                                                                                 |
| 6                                                                       | 992                                                                            | 1'648                                                                                     | 516                                                                        | 0                                                                   | 0                                                                                             | 0                                                                                                                                 |
| 7                                                                       | 63                                                                             | 61                                                                                        | 1'444                                                                      | 0                                                                   | 0                                                                                             | 4'745                                                                                                                             |
| 8                                                                       | 2'384                                                                          | 520                                                                                       | 376                                                                        | 0                                                                   | 0                                                                                             | 0                                                                                                                                 |
| 9                                                                       | 631                                                                            | 2'619                                                                                     | 7'416                                                                      | 46                                                                  | 0                                                                                             | 406                                                                                                                               |
| 10                                                                      | 281                                                                            | 1'068                                                                                     | 5'148                                                                      | 0                                                                   | 0                                                                                             | 0                                                                                                                                 |
| 11                                                                      | 1'698                                                                          | 1'091                                                                                     | 3'183                                                                      | 293                                                                 | 0                                                                                             | 118                                                                                                                               |
| 12                                                                      | 3'566                                                                          | 2'059                                                                                     | 5'683                                                                      | 615                                                                 | 0                                                                                             | 306                                                                                                                               |
| 13                                                                      | 3'171                                                                          | 1'776                                                                                     | 4'200                                                                      | 155                                                                 | 48                                                                                            | 16                                                                                                                                |
| 14                                                                      | 334                                                                            | 146                                                                                       | 2'191                                                                      | 0                                                                   | 0                                                                                             | 0                                                                                                                                 |
| 15                                                                      | 1'963                                                                          | 472                                                                                       | 5'102                                                                      | 176                                                                 | 97                                                                                            | 0                                                                                                                                 |
| 16                                                                      | 3'611                                                                          | 1'582                                                                                     | 8'503                                                                      | 165                                                                 | 6'812                                                                                         | 46                                                                                                                                |
| Total                                                                   | 28'520                                                                         | 37'944                                                                                    | 73'956                                                                     | 6'198                                                               | 6'976                                                                                         | 5'942                                                                                                                             |
|                                                                         |                                                                                |                                                                                           |                                                                            |                                                                     |                                                                                               |                                                                                                                                   |
| Branchen-Nr.                                                            | ERNEU                                                                          | HMS                                                                                       | ABFALL                                                                     | PETRK                                                               | UEBGAS                                                                                        | Total                                                                                                                             |
| Branchen-Nr.                                                            | ERNEU<br>100                                                                   | <b>HMS</b> 297                                                                            | ABFALL 266                                                                 | <b>PETRK</b> 52                                                     | UEBGAS                                                                                        | <b>Total</b> 12'911                                                                                                               |
|                                                                         |                                                                                |                                                                                           |                                                                            |                                                                     |                                                                                               | 12'911                                                                                                                            |
| 1                                                                       | 100                                                                            | 297                                                                                       | 266                                                                        | 52                                                                  | 136                                                                                           |                                                                                                                                   |
| 1 2                                                                     | 100<br>47                                                                      | 297<br>150                                                                                | 266<br>18                                                                  | 52<br>0                                                             | 136<br>444                                                                                    | 12'911<br>6'850                                                                                                                   |
| 1<br>2<br>3                                                             | 100<br>47<br>25                                                                | 297<br>150<br>2'709                                                                       | 266<br>18<br>2'781                                                         | 52<br>0<br>0                                                        | 136<br>444<br>151                                                                             | 12'911<br>6'850<br>25'254                                                                                                         |
| 1<br>2<br>3<br>4                                                        | 100<br>47<br>25<br>77<br>7                                                     | 297<br>150<br>2'709<br>120<br>817<br>288                                                  | 266<br>18<br>2'781<br>4'943<br>0<br>20                                     | 52<br>0<br>0<br>34<br>0                                             | 136<br>444<br>151<br>17<br>655<br>1'163                                                       | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632                                                                             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                         | 100<br>47<br>25<br>77<br>7<br>7<br>2                                           | 297<br>150<br>2'709<br>120<br>817<br>288<br>678                                           | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521                            | 52<br>0<br>0<br>34<br>0<br>0                                        | 136<br>444<br>151<br>17<br>655<br>1'163                                                       | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695                                                                   |
| 1<br>2<br>3<br>4<br>5                                                   | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18                                     | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0                                      | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521                            | 52<br>0<br>0<br>34<br>0<br>0<br>164                                 | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367                                          | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                         | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9                                | 297<br>150<br>2'709<br>120<br>817<br>288<br>678                                           | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0                       | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95                      | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186                                   | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5                           | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117                               | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0                  | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95                      | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55                             | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5                           | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0                                      | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0                       | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95                      | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55                             | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                               | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5<br>78<br>140              | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117                               | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0                  | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95                      | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55<br>665<br>249               | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241<br>12'936                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                         | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5<br>78<br>140<br>153       | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117<br>1                          | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0<br>131<br>0      | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95<br>0                 | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55                             | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241<br>12'936<br>10'640          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                   | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5<br>78<br>140              | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117<br>1<br>115<br>245<br>41      | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0<br>131<br>0      | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95<br>0<br>0            | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55<br>665<br>249<br>1'080<br>6 | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241<br>12'936<br>10'640<br>2'701 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12             | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5<br>78<br>140<br>153       | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117<br>1<br>115<br>245<br>41<br>0 | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0<br>131<br>0      | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95<br>0<br>0<br>72      | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55<br>665<br>249<br>1'080<br>6 | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241<br>12'936<br>10'640          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 100<br>47<br>25<br>77<br>7<br>7<br>2<br>18<br>9<br>5<br>78<br>140<br>153<br>24 | 297<br>150<br>2'709<br>120<br>817<br>288<br>678<br>0<br>117<br>1<br>115<br>245<br>41      | 266<br>18<br>2'781<br>4'943<br>0<br>20<br>5'521<br>0<br>0<br>131<br>0<br>0 | 52<br>0<br>0<br>34<br>0<br>0<br>164<br>0<br>95<br>0<br>0<br>72<br>0 | 136<br>444<br>151<br>17<br>655<br>1'163<br>16<br>367<br>186<br>55<br>665<br>249<br>1'080<br>6 | 12'911<br>6'850<br>25'254<br>34'844<br>3'979<br>4'632<br>12'695<br>3'666<br>11'526<br>6'689<br>7'241<br>12'936<br>10'640<br>2'701 |


Tab. 3-19: Klimanormierter Energieverbrauch im Szenario Ia für das Jahr 2035 nach Branchen (in TJ; Quelle: Basics)

| Branchen-Nr. | HEL    | GAS    | ELEKT  | NAH_FERN | HOLZ   | KOHLE  |
|--------------|--------|--------|--------|----------|--------|--------|
| 1            | 3'655  | 2'634  | 3'717  | 297      | 0      | 214    |
| 2            | 1'063  | 1'006  | 3'939  | 263      | 19     | 30     |
| 3            | 882    | 7'193  | 7'505  | 3'491    | 0      | (      |
| 4            | 3'443  | 12'748 | 14'617 | 401      | 0      | 52     |
| 5            | 249    | 826    | 1'242  | 0        | 0      | (      |
| 6            | 947    | 1'618  | 515    | 0        | 0      | (      |
| 7            | 62     | 60     | 1'405  | 0        | 0      | 4'650  |
| 8            | 2'321  | 512    | 371    | 0        | 0      | (      |
| 9            | 586    | 2'441  | 7'062  | 44       | 0      | 377    |
| 10           | 260    | 984    | 4'833  | 0        | 0      | C      |
| 11           | 1'539  | 1'049  | 3'053  | 291      | 0      | 141    |
| 12           | 3'365  | 2'076  | 5'897  | 619      | 0      | 305    |
| 13           | 2'969  | 1'435  | 4'235  | 157      | 48     | 16     |
| 14           | 277    | 115    | 2'289  | 0        | 0      | (      |
| 15           | 1'731  | 457    | 5'212  | 163      | 91     | C      |
| 16           | 2'999  | 1'394  | 8'491  | 168      | 7'323  | 46     |
| Total        | 26'349 | 36'550 | 74'383 | 5'895    | 7'482  | 5'830  |
| Branchen-Nr. | ERNEU  | HMS    | ABFALL | PETRK    | UEBGAS | Tota   |
| 1            | 108    | 255    | 255    | 50       | 117    | 11'302 |
| 2            | 52     | 154    | 18     | 0        | 454    | 6'999  |
| 3            | 28     | 2'645  | 2'406  | 0        | 149    | 24'300 |
| 4            | 88     | 125    | 5'037  | 32       | 17     | 36'561 |
| 5            | 7      | 727    | 0      | 0        | 583    | 3'635  |
| 6            | 7      | 295    | 21     | 0        | 1'142  | 4'544  |
| 7            | 2      | 664    | 5'410  | 161      | 16     | 12'430 |


| 1     | 108   | 255   | 255    | 50  | 117   | 11'302  |
|-------|-------|-------|--------|-----|-------|---------|
| 2     | 52    | 154   | 18     | 0   | 454   | 6'999   |
| 3     | 28    | 2'645 | 2'406  | 0   | 149   | 24'300  |
| 4     | 88    | 125   | 5'037  | 32  | 17    | 36'561  |
| 5     | 7     | 727   | 0      | 0   | 583   | 3'635   |
| 6     | 7     | 295   | 21     | 0   | 1'142 | 4'544   |
| 7     | 2     | 664   | 5'410  | 161 | 16    | 12'430  |
| 8     | 20    | 0     | 0      | 0   | 362   | 3'586   |
| 9     | 10    | 108   | 0      | 88  | 173   | 10'889  |
| 10    | 5     | 1     | 118    | 0   | 51    | 6'254   |
| 11    | 84    | 103   | 0      | 0   | 639   | 6'899   |
| 12    | 153   | 225   | 0      | 72  | 251   | 12'963  |
| 13    | 166   | 37    | 0      | 0   | 873   | 9'936   |
| 14    | 25    | 0     | 0      | 0   | 5     | 2'711   |
| 15    | 97    | 0     | 0      | 0   | 223   | 7'974   |
| 16    | 160   | 37    | 92     | 0   | 55    | 20'765  |
| Total | 1'012 | 5'376 | 13'358 | 403 | 5'110 | 181'747 |

Die Abbildungen 3-20 und 3-21 zeigen, dass sich die verschiedenen "klassischen" Energieträgergruppen ziemlich unterschiedlich verhalten. Während die Elektrizität (inkl. Eigenproduktion) noch relativ deutlich zunimmt, zeigen die andern Energieträger eine Stagnation oder nehmen sogar ab. In diesem Zusammenhang ist darauf hinzuweisen, dass in diesen Zahlen der längerfristig sich verstärkende Preisvorteil der Kohle nicht durchschlägt. Es wäre durchaus denkbar, dass die Kohle eine Renaissance erlebt.

Abb. 3-20: Entwicklung der konventionellen Energieträgergruppen (in TJ; man beachte, dass die Ordinate nicht immer bei 0 beginnt, Quelle: Basics)







In Abbildung 3-21 ist schliesslich der Energieträgersplit 2035 im Vergleich zu jenem des Jahres 1990 wiedergegeben. Der Anteil der CO<sub>2</sub>-freien Energieträger (ohne Elektrizität) hat sich fast verdoppelt.

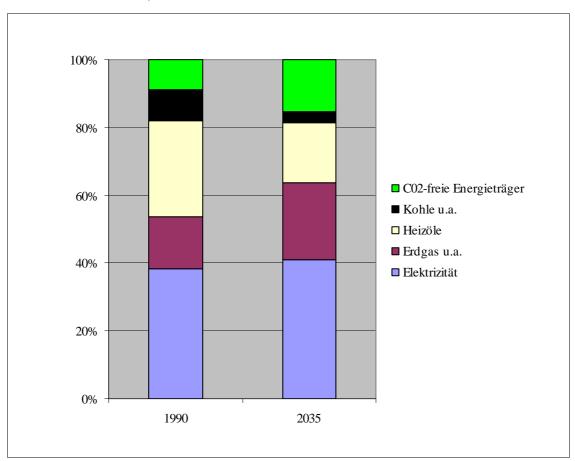



Abb. 3-21: Entwicklung des Energieträgersplits im Vergleich 2035 zu 1990 (Quelle: Basics)

In der ausführlichen Berichterstattung wird u.a. gezeigt werden, wie sich der Energieverbrauch auf die verschiedenen Prozesstypen verteilt, wie sich die Automatisierungs- und Auslastungsgrade branchenspezifisch verändern, welches die spezifischen Fortschritte sind, welches die Genauigkeit der Aussagen ist usw.

### 3.3.2 BIP hoch

In der Variante BIP hoch werden 6.6 Prozent mehr Energie verbraucht als in der Trendvariante (vgl. Abbildung 3-22). Allerdings steht diesem Mehrverbrauch auch ein Wertschöpfungsplus von 19 Prozent gegenüber. Mit andern Worten: Eine weitgehende, aber (noch) nicht vollständige Entkopplung von Wertschöpfung und Energieverbrauch zeichnet tatsächlich sich ab. Rund die Hälfte des Mehrverbrauchs gegenüber dem Trendfall wird im Jahre 2035 durch die Elektrizität verursacht (vgl. Abbildung 3-23). Der Abwärtstrend von Heizöl extra leicht wird deutlich abgeschwächt (vgl. Abbildung 3-24) und der Gasverbrauch stabilisiert sich auf hohem Niveau (vgl. Abbildung 3-25).

Abb. 3-22: Endenergieverbrauch im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

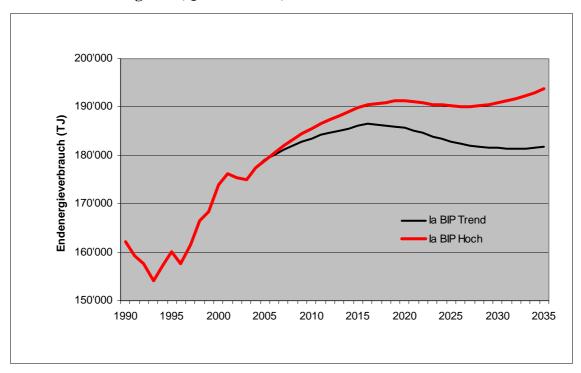



Abb. 3-23: Elektrizitätsverbrauch im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

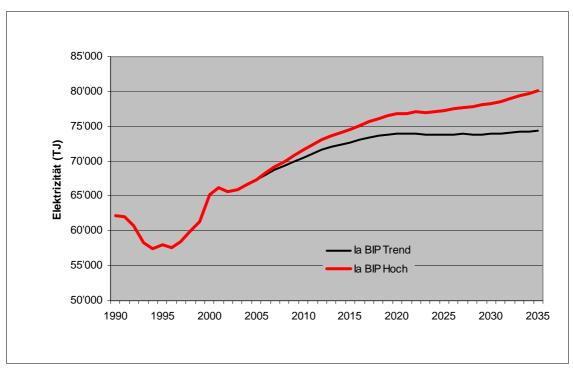



Abb. 3-24: Verbrauch von Heizöl extra leicht im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

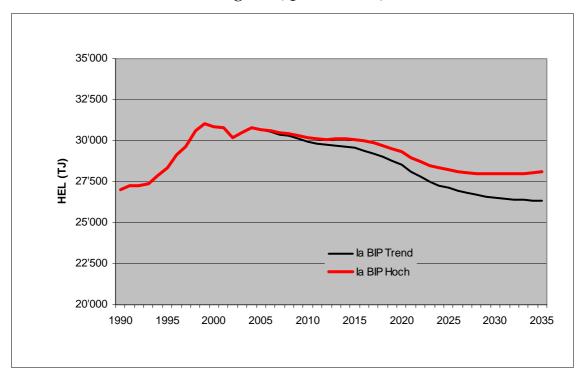
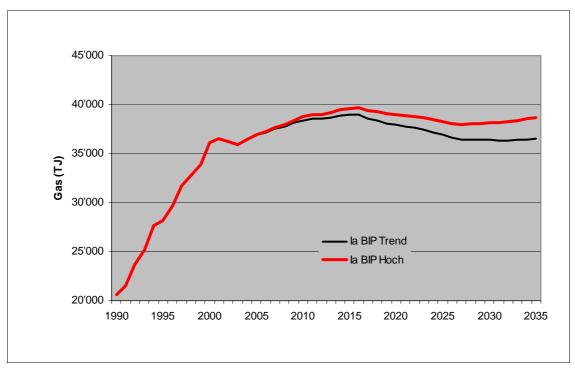




Abb. 3-25: Verbrauch von Gas im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)



#### 3.3.3 Preise hoch

In der Variante mit den hohen Energiepreisen werden rund 2 PJ (gut 1 Prozent) weniger Energie verbraucht, als in der Trendvariante. Abbildung 3-26 zeigt den zeitlichen Verlauf. Diese Reduktion mag als wenig erscheinen; die hohen Energiepreise treffen in der Schweiz aber auf eine im internationalen Vergleich durchaus "energietüchtige" Industrie, die nur wenige wirklich energieintensive Produkte herstellt. Zudem: Die höheren Energiepreise gelten nicht nur national, sondern international; so dass der Spardruck, da alle gleich betroffen sind und die Preise immer noch "zahlbar" sind, nicht allzu hoch ist. Weiter muss berücksichtigt werden, dass die höheren Energiepreise nicht für die Kohle und vor allem nicht für die Elektrizität gelten, womit "Substitutionsfenster" offen gehalten werden.

Die Abbildung 3-27 zeigt den Effekt auf die Elektrizität (die substitutiv zwischen 2 und 3 PJ gewinnt), und die Abbildungen 3-28 sowie 3-29 die Auswirkungen für Heizöl extra leicht und Gas.

Abb. 3-26: Endenergieverbrauch im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

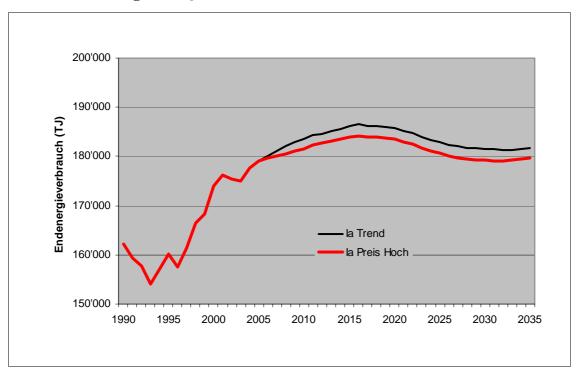



Abb. 3-27: Verbrauch von Elektrizität im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

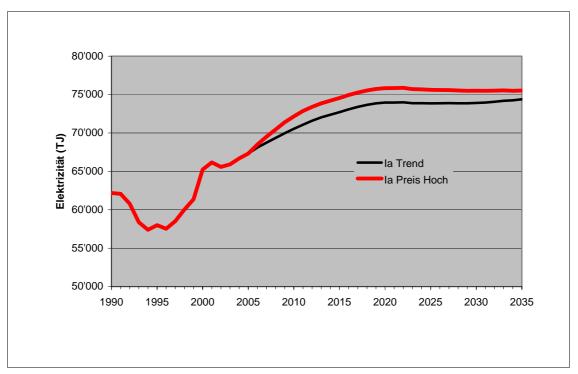
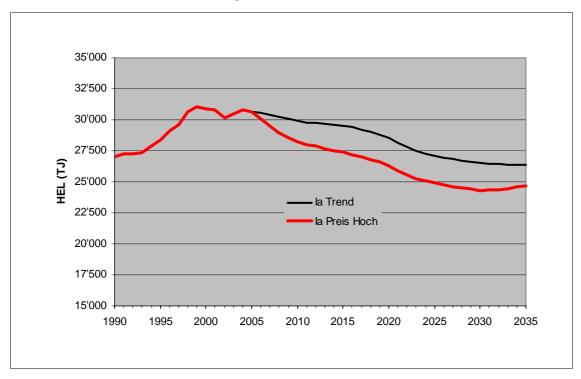




Abb. 3-28: Verbrauch von Heizöl extra leicht im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)



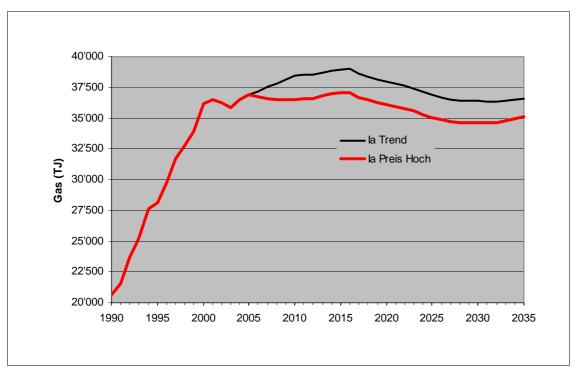



Abb. 3-29: Verbrauch von Gas im Szenario Ia: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

### 3.3.4 Klima hoch

Bei der Bestimmung des Einflusses einer höheren Durchschnittstemperatur wurden nur zwei Effekte berücksichtigt: Geringer Verbrauch an Raumwärme während der Heizperiode und zusätzlicher Kühlungsbedarf während des Sommers. Darüber hinaus könnte man noch den Effekt eines reduzierten Prozesswärmebedarfes quantifizieren. Dieser Effekt ist allerdings so klein, dass auf eine Quantifizierung (vorderhand) verzichtet wurde. Offen bleibt zur Zeit auch die Frage, ob die industrielle Produktion nicht auf ein wärmeres Klima durch andere Produkte und/oder eine andere zeitliche Staffelung der Produktion reagieren könnte. Insofern sind die hier ausgewiesenen Effekte als provisorisch zu betrachten. Speziell auch unter dem Gesichtspunkt, das die für "Klima hoch" angenommene Erhöhung der Temperaturen eher moderat ist.

Die Abbildung 3-30 zeigt den Effekt eines wärmeren Klimas für den gesamten Verbrauch, die Abbildungen 3-31, 3-32 und 3-33 für die Energieträger Elektrizität, Heizöl extra leicht und Gas im Einzelnen. Wie zu erwarten nimmt dabei der Verbrauch an Elektrizität per saldo (Minderverbrauch Heizung, Mehrverbrauch Kühlung) etwas zu, der Verbrauch an den übrigen Energieträger hingegen deutlich ab.

Abb. 3-30: Endenergieverbrauch im Szenario Ia: Varianten Trend und Klima hoch im Vergleich (Quelle: Basics)

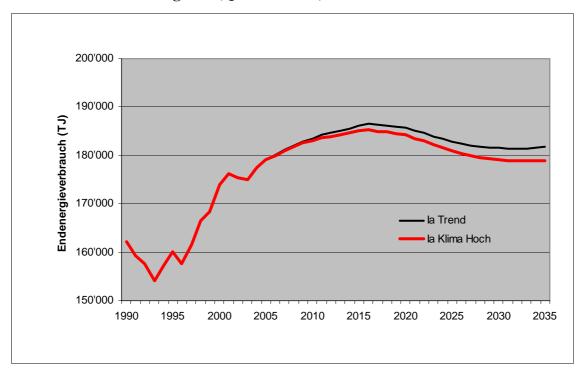



Abb. 3-31: Elektrizitätsverbrauch im Szenario Ia: Varianten Trend und Klima hoch im Vergleich (Quelle: Basics)

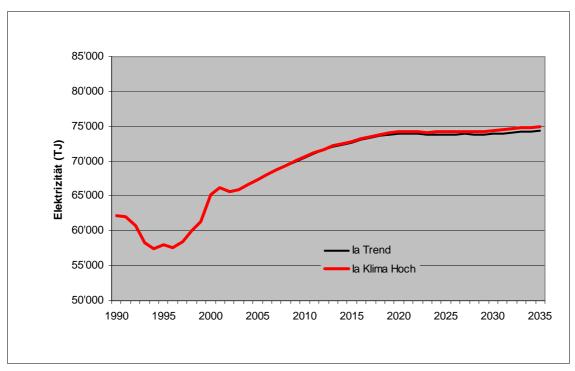



Abb. 3-32: Verbrauch von Heizöl extra leicht im Szenario Ia: Varianten Trend und Klima hoch im Vergleich (Quelle: Basics)

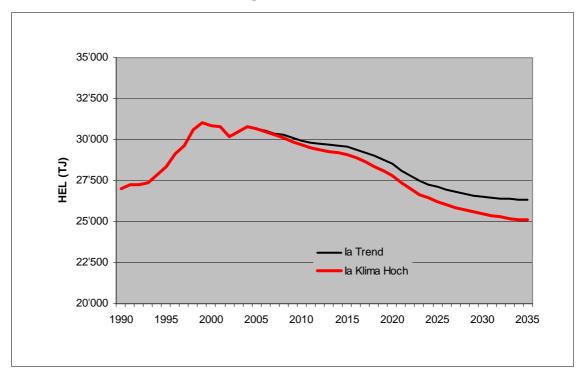
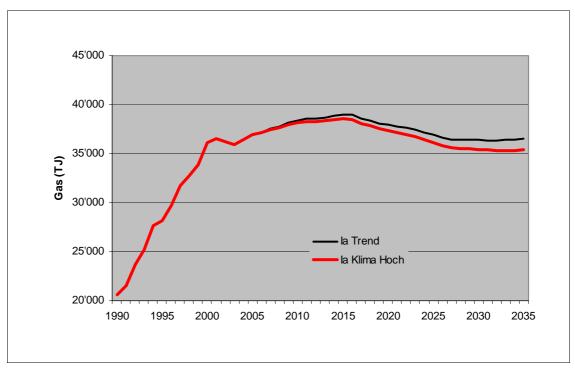




Abb. 3-33: Gasverbrauch im Szenario Ia: Varianten Trend und Klima hoch im Vergleich (Quelle: Basics)



# 3.4 Energieverbrauch Szenario Ib

Die Energieverbräuche von Szenario Ia und Ib unterscheiden sich nicht sehr stark. Dies erklärt sich daraus, dass zum einen die Abgabe nicht sehr hoch ist, zum andern, dass ein Teil der Abgabenwirkung über die im Vorfeld der Abgabe eingegangen (mehr oder weniger freiwilligen) Vereinbarungen zum Teil schon eskomptiert worden sind. Auch für das Szenario Ib wurden bislang 4 Varianten durchgerechnet: Trend; BIP hoch, Preise hoch, Klima hoch. Wir besprechen diese in der Folge wie folgt: Die Trendvariante wird im Vergleich zur Trendvariante von Szenario Ia besprochen, die übrigen Varianten von Szenario Ib im Vergleich zur Trendvariante von Ib.

#### 3.4.1 Trend

Abbildung 3-34 zeigt den resultierenden Gesamtenergieverbrauch von Szenario Ib im Vergleich zu Szenario Ia. Tatsächlich hängt dieser kaum von der Politikvariante ab. Auf der Ebene der einzelnen Energieträger ist dies aber ziemlich anders: CO<sub>2</sub>-freie bzw. arme Energieträger profitieren; der Konsum aller übrigen Energieträger wird zum Teil erheblich reduziert. Die Abbildungen 3.35, 3-36 und 3-37 zeigen dies für die Elektrizität, das Heizöl extra leicht und das Gas.



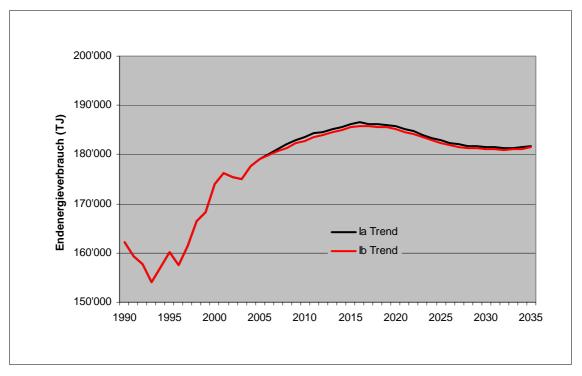



Abb. 3-35: Elektrizitätsverbrauch im Szenario Ib im Vergleich zu Szenario Ia (Quelle: Basics)

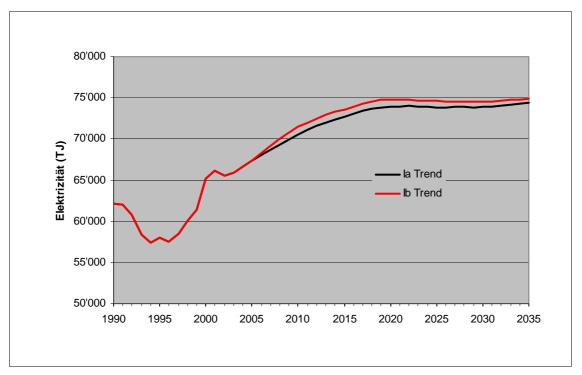
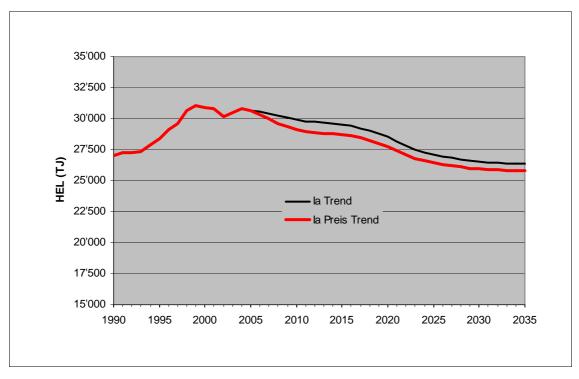




Abb. 3-36: Verbrauch von Heizöl extra leicht im Szenario Ib im Vergleich zu Szenario Ia (Quelle: Basics)



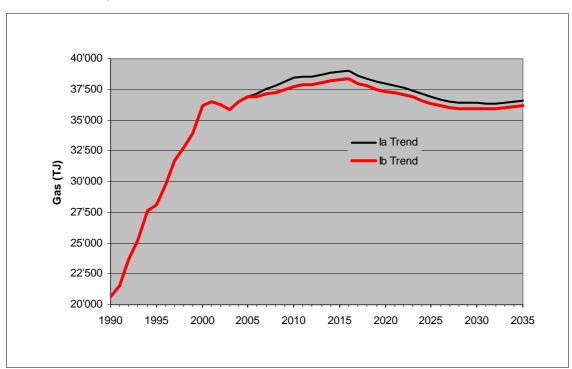



Abb. 3-37: Gasverbrauch im Szenario Ib im Vergleich zu Szenario Ia (Quelle: Basics)

### 3.4.2 BIP hoch

Auch im Politik-Szenario Ib treibt das deutlich grössere Wirtschaftswachstum den gesamten Energieverbrauch um mehr als 10 PJ in die Höhe (vgl. Abbildung 3-38). Die Abbildungen 3-39, 3-40 und 3-41 zeigen die Entwicklung bei den Energieträgern Elektrizität, Heizöl extra leicht und Gas.

Abb. 3-38: Endenergieverbrauch im Szenario Ib: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

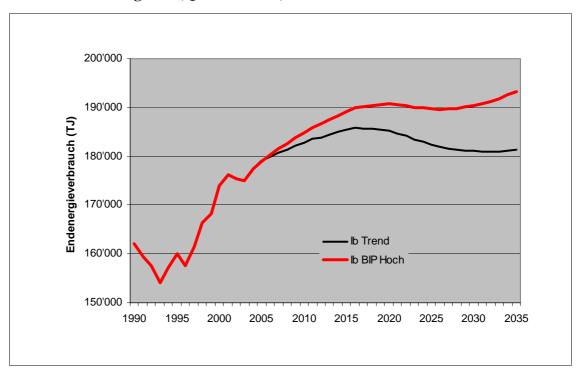



Abb. 3-39: Elektrizitätsverbrauch im Szenario Ib: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)

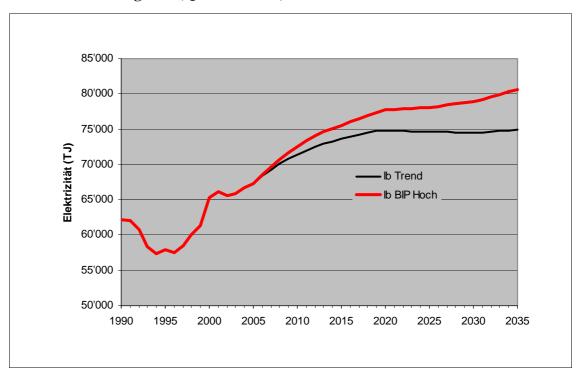
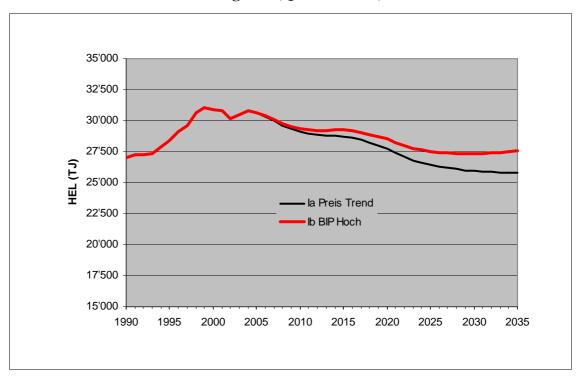
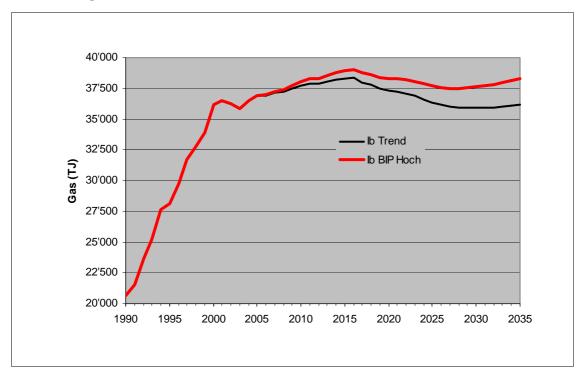
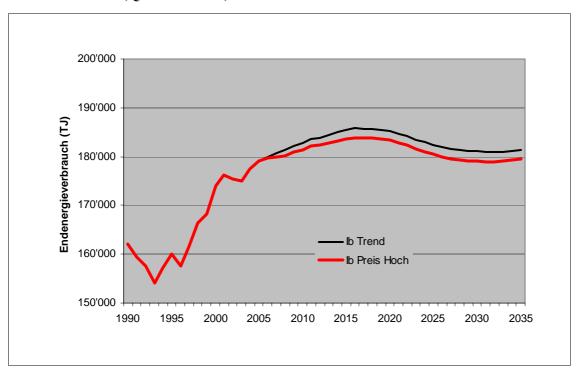



Abb. 3-40: Verbrauch von Heizöl extra leicht im Szenario Ib: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)



Abb. 3-41: Gasverbrauch im Szenario Ib: Varianten Trend und BIP hoch im Vergleich (Quelle: Basics)



#### 3.4.3 Preise hoch

Hohe Energiepreise verstärken natürlich die Wirkung einer CO<sub>2</sub>-Abgabe. Abbildung 3-42 zeigt die Wirkung auf den gesamten Endenergieverbrauch im Zeitablauf.

Abb. 3-42: Endenergieverbrauch im Szenario Ib: Varianten Trend und Preise hoch (Quelle: Basics)



Die Abbildungen 3-43, 3-44 und 3-45 zeigen den Preiseffekt bei der Elektrizität, beim Heizöl extra leicht und beim Gas. Hier nicht dargestellt, aber ebenfalls von Bedeutung: von den hohen Energiepreisen profitiert nicht nur die Elektrizität, sondern auch die energetische Verwendung von Abfällen.

Abb. 3-43: Elektrizitätsverbrauch im Szenario Ib: Varianten Trend und Preise hoch (Quelle: Basics)

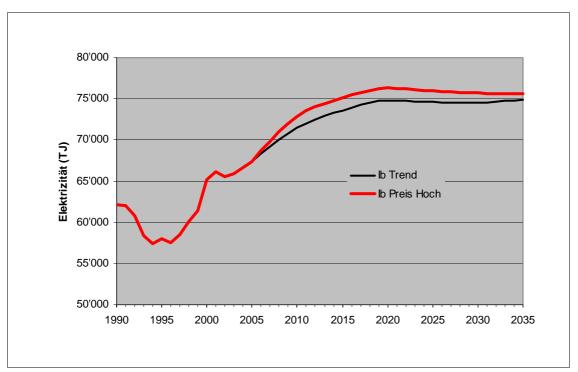
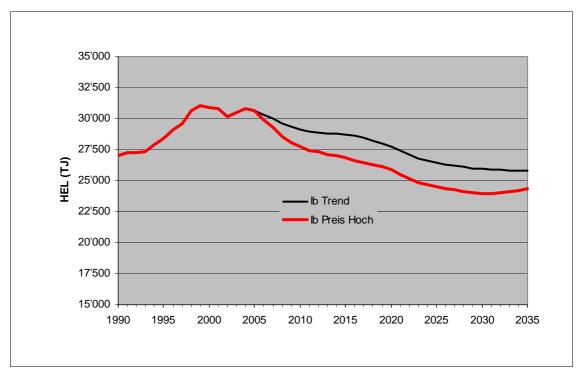




Abb. 3-44: Verbrauch von Heizöl extra leicht im Szenario Ib: Varianten Trend und Preise hoch (Quelle: Basics)



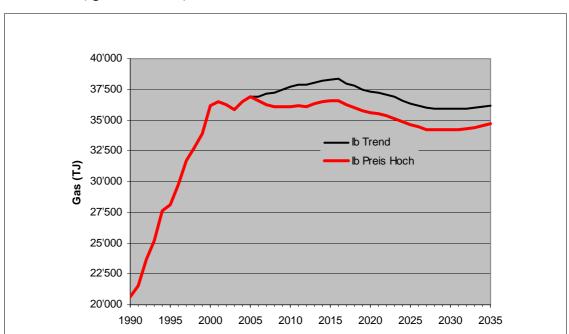



Abb. 3-45: Gasverbrauch im Szenario Ib: Varianten Trend und Preise hoch (Quelle: Basics)

### 3.4.4 Klima hoch

Die folgenden vier Abbildungen 3-46, 3-47, 3-48 und 3-49 zeigen die noch sehr vorläufigen Resultate für die Klimasensitivität von Szenario Ib. "Sehr vorläufig" deshalb, weil sowohl Änderungen für die Trendvariante selbst wie auch für die Klimasensitivität in der "Pipeline" sind.

Abb. 3-46: Endenergieverbrauch im Szenario Ib: Varianten Trend und Klima hoch (Quelle: Basics)

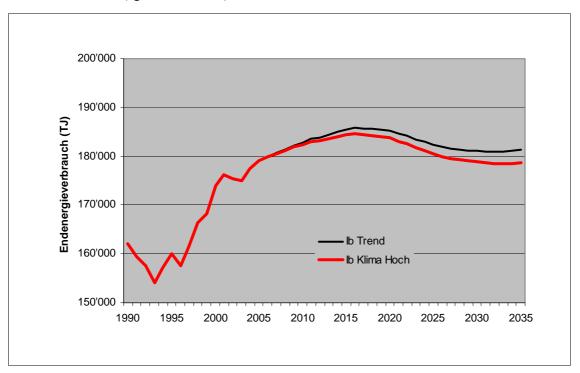



Abb. 3-47: Elektrizitätsverbrauch im Szenario Ib: Varianten Trend und Klima hoch (Quelle: Basics)

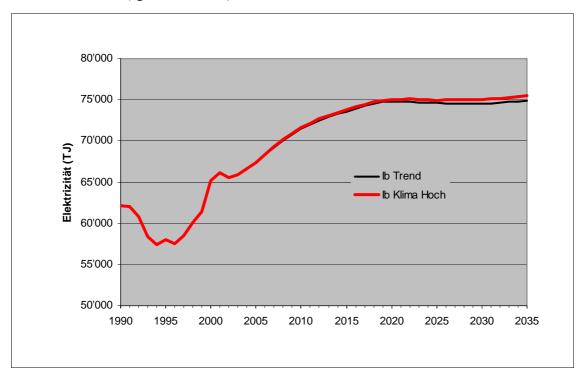
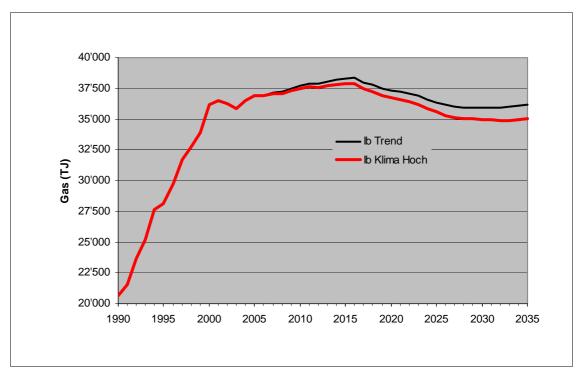




Abb. 3-48: Verbrauch von Heizöl extra leicht im Szenario Ib: Varianten Trend und Klima hoch (Quelle: Basics)



Abb. 3-49: Elektrizitätsverbrauch im Szenario Ib: Varianten Trend und Klima hoch (Quelle: Basics)



# 3.5 CO<sub>2</sub>-Emissionen für Szenario la

Ausgehend von den ermittelten Energieverbräuchen können die resultierenden CO<sub>2</sub>-Emissionen bestimmt werden. Die verwendeten Emissionsfaktoren sind in Tabelle 3-50 zusammengefasst. Zu beachten ist, dass sowohl Nah- und Fernwärme wie auch die Elektrizität als CO<sub>2</sub>-frei angenommen wird, um Doppelzählungen zu vermeiden. Soweit die Industrie Nah- und Fernwärme sowie Elektrizität selbst erzeugt, sind die dabei anfallenden CO<sub>2</sub>-Emissionen natürlich in den nachfolgenden Resultaten über die Inputenergien mit enthalten.

Tab. 3-50: Spezifische CO<sub>2</sub>-Emissionen

| Energieträger (Modell-Kürzel) | Spezifische CO <sub>2</sub> -Emissionen (t/TJ) |
|-------------------------------|------------------------------------------------|
| HEL                           | 73.7                                           |
| GAS                           | 55.0                                           |
| ELEKT                         | 0.0                                            |
| NAH_FERN                      | 0.0                                            |
| HOLZ                          | 0.0                                            |
| KOHLE                         | 94.0                                           |
| ERNEU                         | 0.0                                            |
| HMS                           | 77.0                                           |
| ABFALL                        | 0.0                                            |
| PETRK                         | 77.0                                           |
| UEBGAS                        | 65.5                                           |

Erläuterungen zu den einzelnen Energieträgern finden sich in Tabelle 2-3

#### 3.5.1 Trend

Abbildung 3-51 zeigt die resultierenden klimanormierten CO<sub>2</sub>-Emissionen (nur Brennstoffe). Zusätzlich ist der Bezug auf die Wertschöpfung eingetragen. Passend zur Entwicklung des Energieträgersplits nehmen die spezifischen Emissionen deutlich stärker ab als die spezifischen Energieverbräuche. Zu beachten ist, dass sich die CO<sub>2</sub>-Emissionen von Branche zu Branche stark unterschiedlich entwickeln.

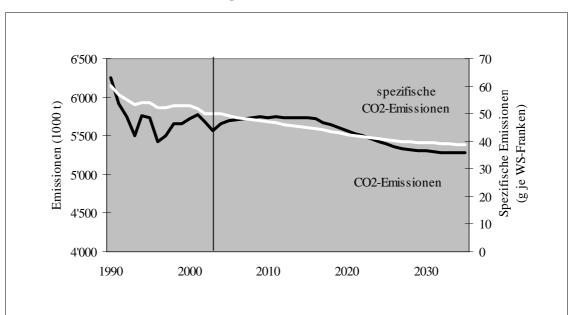



Abb. 3-51: CO<sub>2</sub>-Emissionen und spezifische Emissionen (man beachte die unterschiedliche Skalierung der Ordinaten, Quelle: Basics)

### 3.5.2 BIP hoch

In der Sensitivitätsvariante "BIP hoch" ist nicht nur der Energieverbrauch deutlich höher als im Trendfall, auch die CO<sub>2</sub>-Emissionen: Diese bleiben im Wesentlichen bis 2035 konstant (vgl. Abbildung 3-52).

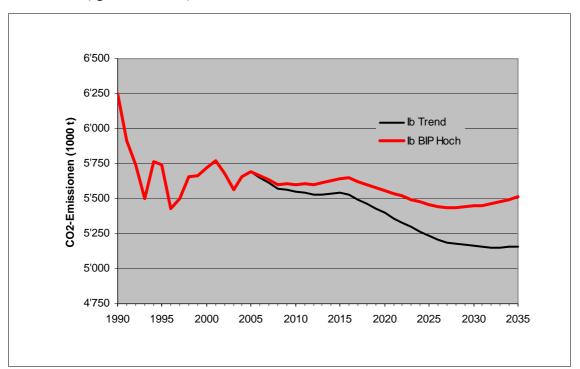
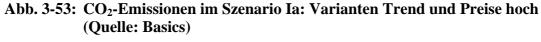
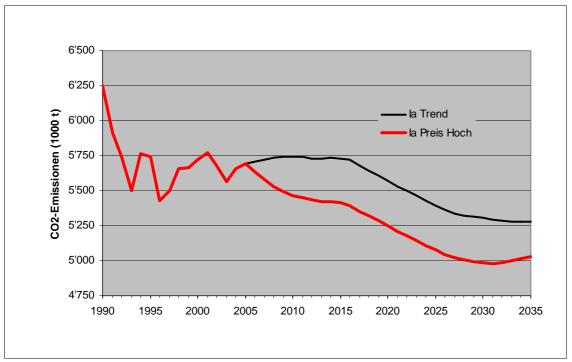





Abb. 3-52: CO<sub>2</sub>-Emissionen im Szenario Ia: Varianten Trend und BIP hoch (Quelle: Basics)

### 3.5.3 Preise hoch

Bei hohen Energiepreisen ergibt sich fast der gleiche Differenzeffekt zum Trendfall wie bei hohem Wirtschaftswachstum, allerdings mit umgekehrtem Vorzeichen (vgl. Abbildung 3-53). Die gesamten Emissionen erreichen um das Jahr 2035 die 5-Millionen-Grenze und verharren im Wesentlichen auf diesem Niveau.





## 3.5.4 Klima hoch

Auch die Klimaerwärmung reduziert den CO2-Ausstoss, allerdings nur etwa halb so stark wie die hohen Energiepreise (vgl. Abbildung 3-54).

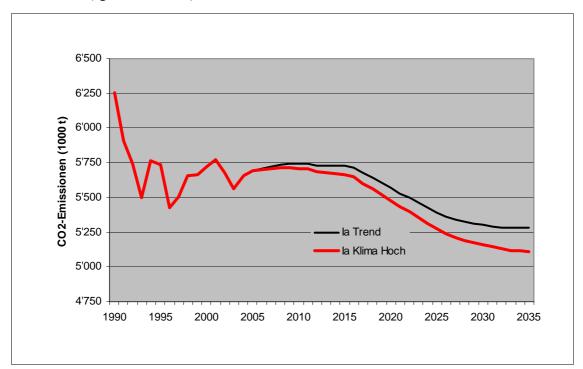


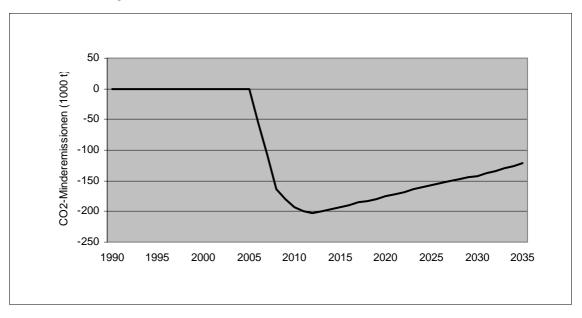
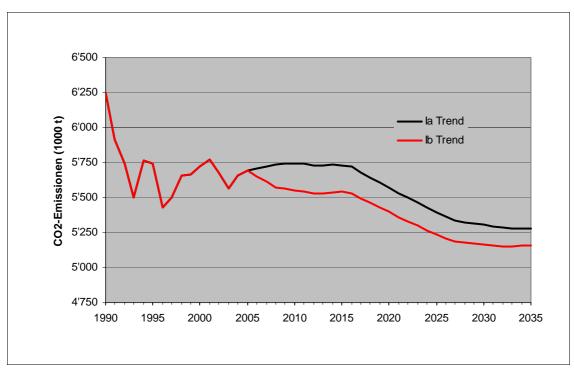

Abb. 3-54: CO<sub>2</sub>-Emissionen im Szenario Ia: Varianten Trend und Klima hoch (Quelle: Basics)

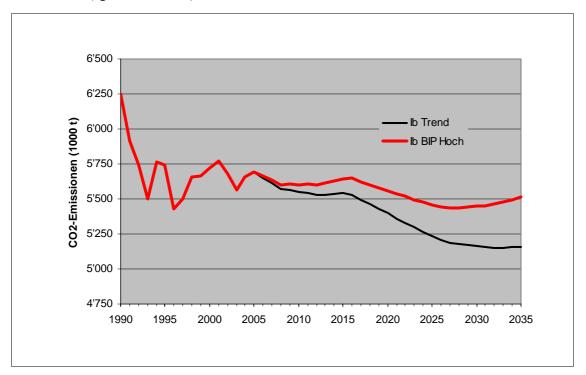
# 3.6 CO<sub>2</sub>-Emissionen für Szenario Ib

#### 3.6.1 Trend

Im Vergleich zu Szenario Ia wird im Szenario Ib ein um bis zu rund 200'000 Tonnen geringerer CO<sub>2</sub>-Aussstoss erreicht (vgl. Abbildung 3-55). Wegen der nominalen Konstanz der Abgabe verflacht sich ihre Wirkung im Laufe der Zeit, so dass sich die CO<sub>2</sub>-Emissionsminderung bis ins Jahre 2035 um rund einen Drittel reduziert. Bezieht man sich auf den CO<sub>2</sub>-Ausstoss im Jahr 2010 und vergleicht diesen mit demjenigen im Jahr 1990, so ergibt sich klimanormiert eine Reduktion von rund 11 Prozent, ohne Abgabe wäre sie rund 9 Prozent. Abbildung 3-56 zeigt die absoluten Emissionen der beiden Szenarien im direkten Vergleich.

**Abb. 3-55:** CO<sub>2</sub>-Emmissionsminderung von Szenario Ib im Vergleich zu Szenario Ia (Quelle: Basics)

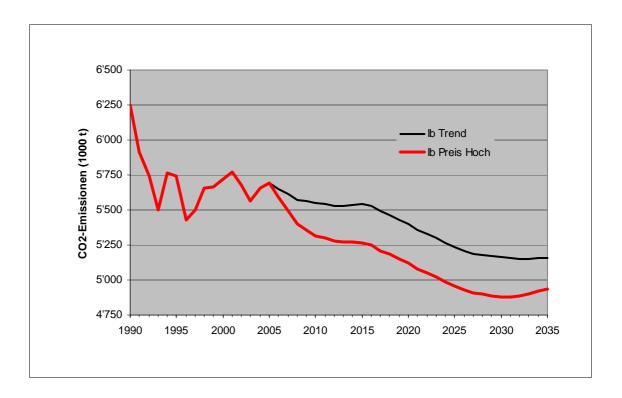





Abb. 3-56:  $CO_2$ -Emissionen in den Szenarien Ia und Ib im direkten Vergleich (Quelle: Basics)



## 3.6.2 BIP hoch

Ähnlich wie im Szenario Ia treibt das hohe Wirtschaftswachstum die CO<sub>2</sub>-Emissionen in die Höhe (vgl. Abbildung 3-57).


Abb. 3-57: CO<sub>2</sub>-Emissionen im Szenario Ia: Varianten Trend und BIP hoch (Quelle: Basics)



#### 3.6.3 Preise hoch

Hohe Preise und eine CO<sub>2</sub>-Abgabe bringen eine deutliche Verringerung der CO<sub>2</sub>-Emissionen mit sich (vgl. Abbildung 3-58); es werden im Jahr 2035 deutlich unter 5 Millionen t erreicht. Würde man zusätzlich noch die Klimaerwärmung in Rechnung stellen (eine nicht unplausible Kombination von Annahmen), dann wäre der CO<sub>2</sub>-Ausstoss im Jahr 2035 nochmals rund 150'000 t tiefer (vgl. Abschnitt 3.6.4).

Abb. 3-58: CO<sub>2</sub>-Emissionen im Szenario Ia: Varianten Trend und Preise hoch (Quelle: Basics)



#### 3.6.4 Klima hoch

Mit der für diese Sensitivitätsvariante unterstellten Klimaerwärmung folgt bis 2035 eine Reduktion um rund 170'000 t (vgl. Abbildung 3-59).

6'500 6'250 lb Trend CO2-Emissionen (1000 t) 6'000 lb Klima Hoch 5'750 5'500 5'250 5'000 4'750 2000 2015 2035 1990 1995 2005 2010 2020 2025 2030

Abb. 3-59: CO<sub>2</sub>-Emissionen im Szenario Ia: Varianten Trend und Preise hoch (Quelle: Basics)

# 3.7 Übersicht

Tabelle 3-60 fasst die oben referierten Modellergebnisse für die Energieverbräuche und die CO<sub>2</sub>-Emissionen für die Jahr 2035 zusammen. Dabei sind die einzelnen Szenarien so geordnet, dass der jeweils höchste Energieverbrauch bzw. die jeweils höchste CO<sub>2</sub>-Emission zuoberst steht. Es zeigt sich, dass die Variabilität bei den CO<sub>2</sub>-Emissionen rund doppelt so gross ist wie beim Energieverbrauch.

Im Übrigen muss hier nochmals daran erinnert werden, dass die Werte für das Szenario Ib noch nicht definitiv sind, sondern nach Vorliegen der neusten Daten des CEPE nochmals angepasst werden müssen. Und auch im Szenario Ia zeichnen sich für die Sensitivitätsvariante "Klima hoch" noch Änderungen ab.

Tab. 3-60: Übersicht über Energieverbräuche und CO<sub>2</sub>-Emissionen für 2035

| g :           | Energiev | erbrauch | G .           | CO <sub>2</sub> -Emissionen |         |  |
|---------------|----------|----------|---------------|-----------------------------|---------|--|
| Szenario      | (TJ)     | (Index)  | Szenario      | (1'000 t)                   | (Index) |  |
| Ia BIP Hoch   | 193'717  | 100      | Ia BIP Hoch   | 5'643                       | 100     |  |
| Ib BIP Hoch   | 193'335  | 100      | Ib BIP Hoch   | 5'512                       | 98      |  |
| Ia Trend      | 181'747  | 94       | Ia Trend      | 5'280                       | 94      |  |
| Ib Trend      | 181'411  | 94       | Ib Trend      | 5'158                       | 91      |  |
| Ia Preis Hoch | 179'723  | 93       | Ia Klima Hoch | 5'109                       | 91      |  |
| Ib Preis Hoch | 179'579  | 93       | Ia Preis Hoch | 5'031                       | 89      |  |
| Ia Klima Hoch | 179'011  | 92       | Ib Klima Hoch | 4'990                       | 88      |  |
| Ib Klima Hoch | 178'713  | 92       | Ib Preis Hoch | 4'937                       | 87      |  |

### 3.8 Robustheit der Resultate

Wie in Abschnitt 1.1 dargestellt wurde, besteht der Kern des Modells in einer Multiplikation von Hochrechnungsfaktoren mit den entsprechenden spezifischen Energieverbräuchen. Während im Zeitablauf die Hochrechnungsfaktoren recht grosse Veränderungen zeigen können<sup>7</sup>, sind demgegenüber die beobachteten spezifischen Verbräuche sehr viel stabiler. Die Gründe sind klar: Während die Vergrösserung oder Verkleinerung einer bestimmten Produktionslinie grundsätzlich sehr rasch erfolgen kann, kann sich deren energetische Verbesserung im Durchschnitt aller Anlagen nur recht langsam vollziehen<sup>8</sup>. Grössere (autonome) Veränderungen sind nur bei ausgeprägten Technologiesprüngen möglich, die von einer Branche als Ganzes quasi simultan vollzogen würden. Abgesehen von solchen Ausnahmeeffekten liegen die (autonomen) Veränderungsraten des Energieverbrauchs bezogen auf *einen* Prozess in aller Regel deutlich unter einem Prozentpunkt je Jahr.<sup>9</sup>

Damit ist für die Energiemodellierung klar, dass die Hochrechnungsfaktoren im Wesentlichen den Energieverbrauch definieren, während die spezifischen Verbräuche einen deutlich kleineren Einfluss auf das Endresultat haben. Salopp gesprochen: Eine "Verschätzung" der Rohaluminiumproduktion für das Jahr 2035 um 50 oder mehr Prozent ist möglich, eine "Verschätzung" des spezifischen Energieverbrauchs um 5 Prozent oder mehr ist aus technischen, d. h. Sze-

Extremstes Beispiel in der Schweiz ist die Rohaluminiumproduktion, vgl. Tabelle 3-1.

Dies ist denn auch einer der Gründe dafür, die Modellierung des spezifischen Energieverbrauchs über ein Kohortenmodell vorzunehmen: so wird sichergestellt, dass der energetischen Trägheit ausreichend Rechnung getragen wird.

Die Einschränkung ist wichtig. In einer Gesamtbilanz kann sich der spezifische Verbrauch völlig anders verhalten als in der Detailbetrachtung (Simpson-Paradox).

nario-unabhängigen Gründen kaum möglich<sup>10</sup>. Deshalb wurde bei der Bearbeitung des Szenarios I auch grosses Gewicht darauf gelegt, zur vorgegebenen Wertschöpfungsentwicklung des Szenarios möglichst gut passende Hochrechnungsfaktoren zu finden.

Deshalb können die Energiepreise und etwaige staatliche Massnahmen beim spezifischen Verbrauch relativ zu einer plausiblen, in sich stimmigen Trendentwicklung ebenfalls keine grossen Auswirkungen haben. Dies gilt allerdings nur so lange, als sich die (relativen) Energiepreisrelationen nicht all zu stark von den heutigen unterscheiden und die staatlichen Massnahmen nicht einschneidenden neuen Beschränkungen bzw. Auflagen entsprechen oder einem völlig neuen Ansatz entsprechen. Beides ist in den Szenarien Ia und Ib nicht der Fall.

Für eine Gesamtbeurteilung der Robustheit der Resultate ist noch eine weitere Überlegung notwendig. Die hier vorgestellten Perspektiven verstehen sich als Projektionen im Sinne eines *Mittelwertes* bzw. einer *durchschnittlichen* Entwicklung. Zunächst mal im Hinblick auf die Witterung: Es wird ein immer gleiches konstantes oder sich gleichmässig veränderndes Jahresklima angenommen. Von daher zeigen die Projektionen keine klimabedingten Zufallsschwankungen (obwohl man diese modellieren könnte). Aber auch im Hinblick auf "singuläre" Ereignisse, die modellmässig nicht zu fassen sind. So kann beispielsweise der starke Rückgang der Stahlproduktion Mitte der 90er Jahre, gefolgt von einem deutlichen Wiederanstieg in der jüngsten Vergangenheit naturgemäss nicht Gegenstand einer Projektion sein. Solche Phänomene können nur ex post in die Rechnungen eingehen.

<sup>10</sup> Immer vorausgesetzt, dass eigentliche Technologiesprünge ausgeschlossen werden.

# **Bibliografie (Auszug)**

#### ATLAS:

http://europa.eu.int/comm/energy\_transport/atlas/htmlu/ioeneff.html

- Basics (1996): Perspektiven der Energienachfrage der Industrie für Szenarien I bis III 1990 2030, Bundesamt für Energiewirtschaft, Bern
- Basics (2000): Perspektiven des Energieverbrauchs in der Industrie, Modelldokumentation zu Handen des BFE, Bundesamt für Energie, Bern
- Blok K. et al. (2004): The Effectiveness of Policy Instruments for Energy-Efficiency Improvement in Firms, The Dutch Experience, Kluwer Academic Publishers, Dordrecht et al.
- Brown H. L. et al. (1996): Energy Analysis of 108 Industrial Processes, The Fairmont Press, Lilburn, USA
- COM (2003): Commission of the European Communities Proposal for a Directive of the European Parliament of the Council on Energy End-use Efficiency and Energy Services, (COM (2003) 739)
- de Beer J. (2000): Potential for Industrial Energy-Efficiency Improvement in the Long Term (Eco-Efficiency in Industry and Science), Kluwer Academic Publishers, Dordrecht et al.
- Diekmann, J. et al. (1999): Energie-Effizienz-Indikatoren: Statistische Grundlagen, theoretische Fundierung und Orientierungsbasis für die politische Praxis, Reihe: Umwelt und Ökonomie, Band 32, Springer-Verlag, Heidelberg et al.
- DUBBEL(2002): Das elektronische Taschenbuch für den Maschinenbau, Version 2.0, 2002, CD-ROM, Springer, electronic media, Heidelberg
- Gloor R. (2000): Energieeinsparungen bei Druckluftanlagen in der Schweiz, Bundesamt für Energie, Bern
- IKARUS (1997): IKARUS-Datenbank, Ein Informationssystem zur technischen, wirtschaftlichen und umweltrelevanten Bewertung von Energietechniken, Forschungszentrum Jülich GmbH, Jülich
- Jochem E. et al. (Hrsg. 2004): Energieperspektiven und CO<sub>2</sub>-Reduktionspotenziale in der Schweiz bis 2010, vdf, Zürich

### Motor Challenge Programme:

http://energyefficiency.jrc.cec.eu.int/motorchallenge/

Schmid C (2004): Energieeffizienz in Unternehmen, eine wissensbasierte Analyse von Einflussfaktoren und Instrumenten, vdf, Zürich

- Syrene (1994): Long term Industrial Energy Efficiency Improvement: Technology Descriptions, NOVEM, Netherlands
- Worrell E., de Beer J. (1993): Industrial Process Data Descriptions, for the EMS study, Utrecht University, Dept. of Science, Technology and Society, The Netherlands.