Dynamische Regelung des Leistungsfaktors cos Phi und des Drehmoments

Potenzialanalyse zur Energieeffizienzsteigerung für Drehstrommotoren mit konstanter Drehzahl und variabler Last

Dynamische Regelung des Leistungsfaktors cos Phi und des Drehmoments

Autoren

Murat Yildiz, Bycon GmbH

Reto Baumann, Bycon GmbH

Diese Studie wurde im Auftrag von EnergieSchweiz erstellt. Für den Inhalt sind allein die Autoren verantwortlich.

Adresse

EnergieSchweiz, Bundesamt für Energie BFE
Mühlestrasse 4, CH-3063 Ittigen. Postadresse: CH-3003 Bern
Infoline 0848 444 444, www.infoline.energieschweiz.ch
energieschweiz@bfe.admin.ch, www.energieschweiz.ch, twitter.com/energieschweiz

Zusammenfassung

Ausgangslage

Im Bereich der Energieeffizienzsteigerung bei Drehstrommotoren mit konstanter Drehzahl und variabler Last durch dynamische Regelung des Leistungsfaktors cos Phi und des Drehmoments fehlen bislang gesicherte Erkenntnisse bezüglich geeigneter Anwendungen und Technologien. Es ist unklar, wie hoch das Einsparpotenzial ist. Deshalb soll eine Potenzialanalyse vorgenommen werden.

Anwendungen und Technologie

In einer Labormessreihe wurde die Differenz des elektrischen Energieverbrauchs von Drehstrom-Asynchron-Antrieben vor und nach einer Modifikation des Systems ermittelt. Die Schätzung wurde für die drei Hauptanwendungsgebiete Fertigungstechnik, Fördertechnik und Verfahrenstechnik vorgenommen. Verwendete Technologien:

DTC-Frequenzumrichter-Technologie: Technologie mit hoher Komplexität, nicht primär zur Energieeffizienzsteigerung entwickelt. Elektrisches Einsparpotenzial gemäss Hersteller: 25 % Last = 10 % Einsparungen; 50 % Last = 2 % Einsparungen.

SinuMEC-Technologie: Technologie mit niedriger Komplexität, ausschliesslich zur Energieeffizienzsteigerung entwickelt. Elektrisches Einsparpotenzial gemäss Hersteller: 25 % Last = 30–40 % Einsparungen; 50 % Last = 20–30 % Einsparungen.

Sparpotenzial

Die Einsparungen mit der DTC-Frequenzumrichter-Technologie waren deutlich geringer als vom Hersteller angegeben. Der Lastbereich, in welchem überhaupt Einsparungen realisiert werden können, endet steil abfallend bei 40 %. Die mit der SinuMEC-Technologie gemessenen Resultate zeigen Einsparungen, die von 14 % bei 25 % Auslastung auf 5 % bei 50 % Auslastung des Motors abfallen. Die anfängliche Einschätzung des Gesamteinsparpotenzials lag grundsätzlich höher als die Ergebnisse der Messungen.

Ursprüngliche Potenzialabschätzung:

Min. 120 GWh/a Verbrauchs- und 13'000'000 CHF/a Kosteneinsparung

Max. 481 GWh/a Verbrauchs- und 53'000'000 CHF/a Kosteneinsparung

Neue Potenzialabschätzung:

Min. 47 GWh/a Verbrauchs- und 5'000'000 CHF/a Kosteneinsparung

Max. 183 GWh/a Verbrauchs- und 20'000'000 CHF/a Kosteneinsparung

Fazit

Die Voraussetzung für die Verwendung der DTC-Frequenzumrichter-Technologie zur Energieeffizienzsteigerung ist nicht gegeben. Auch wenn der Einsatz der SinuMEC-Technologie im tiefen Lastenbereich grundsätzlich gegeben wäre, sprechen unter anderem verhältnismässig hohe Herstellungskosten dagegen. Mit einer deutlich kostengünstigeren Technologie zur Absenkung der Spannung im Teillastbereich wäre ein Retrofit-Einsatz bei entsprechend geeigneten Anlagen ökologisch und wirtschaftlich durchaus sinnvoll.

Résumé

Situation initiale

Jusqu'à présent, des résultats solides concernant des applications et des technologies adaptées font défaut dans le domaine de l'amélioration du rendement de moteurs à courant alternatif à régime constant et à charge variable grâce à une régulation dynamique du facteur de puissance cos Phi et du couple. Personne n'est en mesure de quantifier précisément le potentiel d'économies. C'est pourquoi une analyse du potentiel s'impose.

Applications et technologies

Lors d'une série de mesures en laboratoire, la différence de consommation d'énergie électrique de moteurs asynchrones à courant alternatif a été déterminée avant et après une modification du système. L'estimation a été réalisée à l'aune des trois principaux champs d'application que sont les techniques de fabrication, les techniques de transport et le génie des procédés. Technologies utilisées:

Technologie des convertisseurs de fréquence DTC: technologie hautement complexe qui n'a pas été développée à l'origine pour améliorer le rendement énergétique. Potentiel d'économies électriques d'après le fabricant: 25% de charge = 10% d'économies; 50% de charge = 2% d'économies.

Technologie SinuMEC: technologie peu complexe développée exclusivement pour améliorer le rendement énergétique. Potentiel d'économies électriques d'après le fabricant: 25% de charge = 30 à 40% d'économies; 50% de charge = 20 à 30% d'économies.

Potentiel d'économies

Les économies obtenues avec la technologie des convertisseurs de fréquence DTC ont été bien plus modestes que celles annoncées par le fabricant. La plage de charge sur laquelle des économies peuvent effectivement être réalisées se termine abruptement à 40%. Les résultats mesurés pour la technologie SinuMEC font état d'économies qui passent de 14% pour une charge du moteur de 25% à 5% pour une charge de 50%. L'estimation initiale du potentiel d'économie total était globalement supérieure aux résultats des mesures.

Estimation originale du potentiel:

Réduction de la consommation d'au moins 120 GWh par an et baisse des coûts d'au moins 13 millions de francs par an

Réduction maximale de la consommation de 481 GWh par an et baisse maximale des coûts de 53 millions de francs par an

Nouvelle estimation du potentiel:

Réduction de la consommation d'au moins 47 GWh par an et baisse des coûts d'au moins 5 millions de francs par an

Réduction maximale de la consommation de 183 GWh par an et baisse maximale des coûts de 20 millions de francs par an

Résumé

Les conditions de l'utilisation de la technologie des convertisseurs de fréquence DTC en vue d'améliorer le rendement énergétique ne sont pas réunies. Même si l'utilisation de la technologie SinuMEC est en principe indiquée au bas de la plage de charge, les coûts de fabrication relativement élevés sont prohibitifs. Sur la base d'une technologie bien moins onéreuse visant à réduire la tension sur la plage de charges partielles, un rétrofit serait parfaitement judicieux sur les plans écologique et économique sur des installations adaptées.

Inhalt

1	Vorwort	8
2	Ausgangslage	9
2.1	Auftrag	9
2.2	Hintergrund	9
2.3	Aufgaben	11
2.4	Abgrenzung	11
2.5	Kenntnisstand Schweiz	11
3	Anwendungsanalyse	12
3.1	Anwendungen	12
3.2	Infrage kommende Anwendungen	13
3.3	Einsparpotenzial	13
3.3.1	Berechnungsgrundlage	13
3.4	Frequenzumrichter	15
3.4.1	Direkte Drehmomentregelung für AC-Antriebe am Beispiel der ABB DTC-Technologie	15
3.5	Variable Spannungsversorgung	15
3.5.1	cos Phi und Drehmomentregelung am Beispiel der PowerSines-SinuMEC-Technologie	15
3.6	Technologievergleich	16
4	Messverfahren	17
4.1	Ziel der Messung	17
4.2	Messvorgehen	17
4.3	Dauer der Messung (Zeitraum)	17
4.4	Messgrössen	17
4.5	Messaufbau/Messstellen	18
4.5.1	Messung an den Aussenleitern des Antriebs	18
4.5.2	Messung innerhalb der Dreieckschaltung	18
4.6	Auswertung und Ermittlung der Differenz des Energieverbrauchs	20
4.6.1	Messgerät	21
5	Pilotanlage	22
5.1	Objekt und Anlagedaten	22

10	Rechtliche Hinweise	53
9	Abbildungsverzeichnis	52
8	Tabellenverzeichnis	51
7	Literaturverzeichnis	50
6.4.3	Gesamteinsparpotenzial für eine dynamische Regelung des cos Phi und Drehmoments	
6.4.2	SinuMEC-Technologie	48
6.4.1	DTC-Frequenzumrichter-Technologie	48
6.4	Zusammenfassung, Fazit aus der Labormessreihe	48
6.3.4	Analyse des Gesamt- beziehungsweise Systemwirkungsgrades ETA tot	45
6.3.3	Analyse der Drehzahl beziehungsweise des Schlupfs	44
6.3.2	Analyse der elektrischen Stromaufnahme I und des cos Phi	41
6.3.1	Analyse der elektrischen Leistungsaufnahme P1el	39
6.3	Messergebnisse	38
6.2.6	Messaufbau mit DTC-Frequenzumrichter	37
6.2.5	Messaufbau mit SinuMEC	36
6.2.4	Messaufbau direkt am Netz	35
6.2.3	Technologien zur Energieoptimierung	34
6.2.2	Messausrüstung	33
6.2.1	Prüfanlage	32
6.2	Messaufbau	32
6.1.1	Ziel der Messreihe	31
6.1	Messkonzept	31
6	Labormessreihe	31
5.2	Erkenntnisse aus den Messungen	30
5.1.4	Messwerte und berechnete Werte der Initialmessung nach der Modifikation	28
5.1.3	Kennliniendarstellung der Initialmessung nach der Modifikation	27
5.1.2	Messwerte und berechnete Werte der Initialmessung vor der Modifikation	25
5.1.1	Kennliniendarstellung der Initialmessung vor der Modifikation	24
5.1	Messresultate	24
5.2	Nenndaten des Antriebs	22

1 Vorwort

Im Auftrag des BFE hat die Bycon GmbH untersucht, wie viel elektrische Energie in der Schweiz bei Drehstrommotoren mit konstanter Drehzahl und variabler Last durch die dynamische Regelung des Leistungsfaktors cos Phi und des Drehmoments eingespart werden kann.

Es wurde eine Schätzung für die drei hauptsächlichen Anwendungsbereiche erstellt:

- Fertigungstechnik
- Verfahrenstechnik
- Fördertechnik

Die Angaben zu den Verbrauchsabschätzungen für die Schweiz basieren auf bereits bestehenden Untersuchungen im Auftrag des BFE, die beispielsweise von Impact Energy und vom Eidgenössischen Inspektorat für Aufzüge (EIA) (betreffend dort gemeldete Aufzüge) durchgeführt worden waren.

Aktuell wird der mutmasslich sehr wichtige Aspekt HVAC (HLK) nicht berücksichtigt. Höchstwahrscheinlich verfügen grössere Klimaverdichter sowohl über beachtliches Potenzial als auch eine hohe Dichte im Markt.

Es ist anzunehmen, dass es je nach Bauform Unterschiede bezüglich der Anwendbarkeit von Frequenzumrichtern gibt. Zudem sind wohl ähnlich wie bei den Spritzgussmaschinen noch zahlreiche ältere Geräte mit Potenzial auf dem Markt.

Insgesamt sind schweizweit heute rund eine Million rotierende Maschinen und Förderanlagen in Betrieb, die elektrische Energie im Umfang von rund 4 TWh/a verbrauchen, wovon 3.2 TWh/a direkt auf die elektrischen Antriebe entfallen. Jährlich werden rund 56'000 neue Maschinen in Betrieb gesetzt. Das technisch mögliche und wirtschaftliche Potenzial einer dynamischen Regelung des cos Phi und des Drehmoments wird auf rund 120 bis 481 GWh/a geschätzt.

Zusätzlich sind auch rund 30 Millionen Handmaschinen (Bohrmaschinen, Kreissägen, Mixer etc.) sowie Stellantriebe (Türen, Ventile etc.) im Einsatz. Ihre energetische Bedeutung ist gering.

(Tieben, Brunner, Gloor & Nipkow, 2015)

2 Ausgangslage

2.1 Auftrag

Das Bundesamt für Energie (BFE) hat die Bycon GmbH beauftragt, eine Potenzialanalyse zur Energieeffizienzsteigerung bei Drehstrommotoren mit konstanter Drehzahl und variabler Last durch dynamische Regelung des Leistungsfaktors cos Phi und des Drehmoments vorzunehmen. In diesem Bereich fehlen bislang gesicherte Erkenntnisse bezüglich geeigneter Anwendungen und Technologien, und es ist unklar, wie hoch das Einsparpotenzial ist.

2.2 Hintergrund

Bei den im Rahmen dieses Projekts untersuchten Antrieben handelt es sich um Drehstrom-Asynchronmotoren.

Zahlreiche Maschinen der Industrie und der Consumermärkte verfügen über Antriebe, die aufgrund von Prozessen mit einer konstanten Drehzahl betrieben werden. Bei einem beachtlichen Teil davon variiert die Last des Antriebs. Mit einem klassischen Frequenzumrichter zur Drehzahlregelung lässt sich bei dieser Anwendung keine Energie einsparen. Wenn Antriebe solcher Anwendungen im Teillastbereich arbeiten (< 50% Last), fällt ihr Wirkungsgrad zunehmend stark ab.

Dadurch reduziert sich nicht nur der Wirkungsgrad, sondern auch der cos Phi und das Drehmoment, die zueinander in Relation stehen.

Es ist darum eine Technologie erforderlich, die dem Antrieb nur gerade so viel Drehmoment wie benötigt zur Verfügung stellt und so den cos Phi im Teillastbereich anhebt. Dadurch kann der Motorwirkungsgrad markant angehoben werden. Wenn die Technologie dynamisch dem erforderlichen Drehmoment folgt, wird bei Antrieben mit tiefen, variablen Lasten der Energieverbrauch markant gesenkt.

Die Betrachtung von Bremskennlinien solcher Antriebe (siehe Abbildung 1) zeigt, dass im Einsatzbereich unterhalb von 50% Auslastung der Wirkungsgrad sehr steil und linear gegen null abfällt. Daraus folgt, dass mit einer solchen Technologie dann sehr grosse Energieeinsparungen erzielt werden können, wenn der Motor überwiegend mit einer sehr tiefen Last, deutlich unterhalb von 50%, betrieben wird.

Die Charakteristik des Wirkungsgradverlaufs im Verhältnis zur Belastung des Antriebs ist bei allen Asynchron-Drehstrommotoren ähnlich, was darauf schliessen lässt, dass mit dieser Art der Effizienzsteigerung unabhängig von der Energieeffizienzklasse (IE) des Antriebs hohe Einsparungen erzielt werden können.

Da die Regelung auch den cos Phi anhebt, sinkt der Bezug von Blindleistung, wodurch sich der Betrieb einer entsprechenden Kompensationsanlage in vielen Fällen erübrigt.

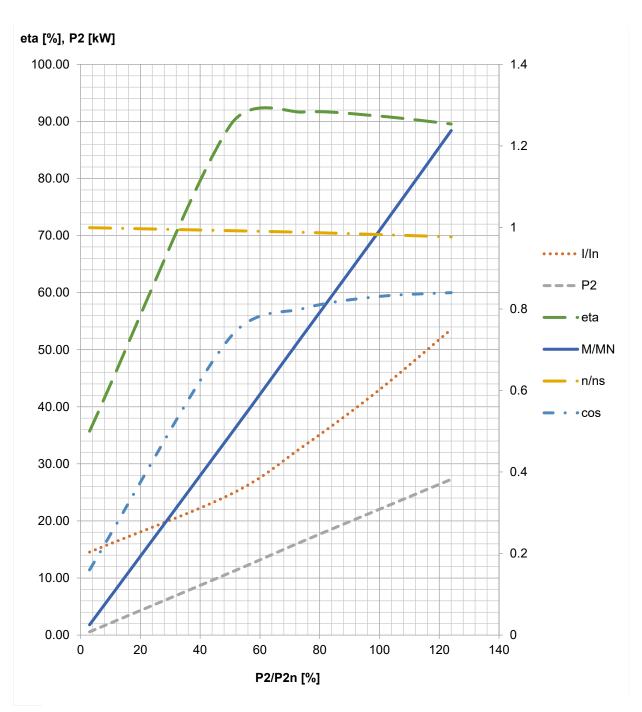


Abbildung 1: Bremskennlinie eines 22-kW-Asynchron-Drehstrommotors mit 1450 1/min

2.3 Aufgaben

Folgende Aufgaben stehen für diese Untersuchung im Vordergrund:

- Anwendungen und Branchenanalyse (1. Phase)
- Potenzialanalyse (1. Phase)
- Technologieabklärung (1. Phase)
- Pilotanlage (1. Phase)
- Messverfahren (1. Phase)
- Durchführung von Messungen (2. Phase)
- Herstellung einer Demoanlage (2. Phase)
- Information und Schulung für Energieberater und evtl. potenzielle Anwender (2. Phase)

2.4 Abgrenzung

Untersucht werden im Rahmen dieser Analyse nur Anwendungen mit Drehstrommotoren mit konstanter Drehzahl und variabler Last.

2.5 Kenntnisstand Schweiz

Die Methode ist bisher in der Schweiz nicht verbreitet; es ist möglich, dass in einzelnen Betrieben bereits solche Optimierungen im Einsatz stehen. Das Einsparpotenzial wurde bis anhin nicht erhoben.

3 Anwendungsanalyse

Die Analyse der Anwendungen ist ein wichtiges Element, um das Potenzial abzuschätzen. Die Annahmen und Zahlen basieren auf der Untersuchung von R. Tieben und seinen Mitautoren aus dem Jahr 2015 «*Potentialanalyse Rotierende Maschinen und Förderanlagen»* (Tieben, Brunner, Gloor & Nipkow, 2015) und den Angaben des Zentralen Aufzugsregisters (Eidgenössisches Inspektorat für Aufzüge [EIA] des SVTI, 2018).

3.1 Anwendungen

Die meisten Drehstrommotoren mit konstanter Drehzahl und variabler Last werden in der Industrie und im Gewerbe eingesetzt, die Personenförderanlagen zudem auch im Dienstleistungs- und Wohnungssektor.

Die Anwendungen können in folgende Haupt- und Unterkategorien unterteilt werden:

Fertigungstechnik: Veränderung der Geometrie eines Werkstückes

Verfahrenstechnik: Veränderung der Eigenschaften eines Werkstückes (nicht nur

Geometrie)

Fördertechnik: Veränderung der Position eines Werkstückes

Prozesszweck	Prozessart	Prozess	Beispiele
Fertigungstechnik	Urformen	Giessen, Formen	Spritzgussmaschine
	Trennen	Werkzeugmaschinen	Bearbeitungszentren
(Veränderung der Geometrie)		Spanabheben	Fräsen, Bohren, Drehen
(Veranderding der Geomethe)		Schleifen, Polieren	Trennscheibe, Kernbohren
		Stanzen, Schneiden	Locher, Schere
	Umformen	Biegen	Blechbearbeitung, Falzen
		Walzen	Blech-, Profilherstellung
		Pressen	Formpresse, Prägen
	Beschichten	Oberflächenbehandlung	Lackieren, Drucken
	Fügen	Einpressen	Nieten, Nageln, Crimpen
		Montieren	Industrieroboter
			Bestückung, Weben
		Verpacken	Kuvertiermaschine
Verfahrenstechnik	Trennen	Zerkleinern	Mahlen, Hacken, Mixer
		Entwässern	Zentrifuge, Auspressen
(Veränderung der Eigenschaften)		Reinigen	Bürsten, Kratzen
		Sortieren	Rütteln, Sieben
	Mischen	Umwälzen	Mischtrommel
		Rühren	Rührwerk
		Schütteln	Betonverdichter
	Bewegen	Kneten	Teigherstellung, Conge
		Wickeln	Haspel, Spulen
		Drehen	Auswuchten, Kalibrieren
Fördertechnik	Transport	Personen	Lift, Rolltreppe
		Stückgut	Kran, Band, Lagertechnik
(Veränderung der Position)		Schüttgut	Förderband, Vibrorinne
	Position	Bauelemente	Türen, Storen
		Absperrelemente	Klappen, Ventile

Abbildung 2: Einteilung in Haupt- und Unterkategorien

(Tieben, Brunner, Gloor & Nipkow, 2015)

3.2 Infrage kommende Anwendungen

Folgende Anwendungen (Prozess) haben konstante Drehzahlen und variable Lasten:

- Giessen
- Schleifen, Polieren
- Stanzen, Schneiden
- Pressen
- Zerkleinern
- Reinigen
- Rühren
- Kneten
- Transport von Personen
- Transport von Stückgut
- Transport von Schüttgut

3.3 Einsparpotenzial

Das berechnete Einsparpotenzial (siehe Tabelle 1 Einsparpotenzial) zeigt die mögliche Einsparung bei allen Anwendungen, welche die technischen Grundbedingungen (konstante Drehzahl und variable Last) erfüllen. Im Einzelfall ist es jedoch möglich, dass die Drehzahl nicht konstant oder die Last nicht variabel und der betreffende Anwendungsfall daher nicht geeignet ist.

3.3.1 Berechnungsgrundlage

- Untersuchung von R. Tieben und seinen Mitautoren aus dem Jahr 2015 «Potentialanalyse Rotierende Maschinen und Förderanlagen» (Tieben, Brunner, Gloor & Nipkow, 2015)
- Strompreis: 0.11 CHF/kWh
- Kohlendioxidäquivalente für den zertifizierten Strommix: 14.4 g CO2-eq
- Gewichtungsfaktor:
 - Mittlere Leistungsaufnahme pro Stück: > 1.9 kW
 - Gesamter elektrischer Motorenverbrauch: > 15 GWh/a

	Prozessørupple	e		Prozessart	+				Einsp	rpotential	Einsparpotential bei geeigneter Funktion	tion		
						Verbrauch ohne Regelung cosphi	min. und max. Verbrauch mit Regelung coshpi und	erbrauch mit shpi und	min. Verbrauchs-	max. Verbrauchs-	min. Kosten-einsparung bei folgendem	max. Kosten-einsparung bei folgendem	min. Reduktion CO2-Ausstos	max. Reduktion CO2-Ausstos
						und Drehmoment	Drehmoment [GWh/a]	[GWh/a]	einsparung	einsparung	kWh-Preis	kWh-Preis	[t CO2-eq]	[t CO2-eq]
neH	Hauptkategorie	Nr.	Untergruppe	Prozess	Beispiel	e/yw5	10%	40%	е/чм5	GWh/a	CHF 0.11	CHF 0.11	0.0000144	0.0000144
Fertigu	Fertigungstechnik	A1	Formen	Giessen	Spritzgussmaschinen	80	72	48	8	32	CHF 880'000	CHF 3'520'000	115	461
(Veränderur	(Veränderung der			Bearbeitungsautomaten	Werkzeugmaschine	0	0	0	0	0	CHFO	CHFO	0	0
040000	(a)			Spanabheben	Fräsen, Bohren, Drehen	0	0	0	0	0	OHLO	CHFO	0	0
				Schleifen, Polieren	Bandschleifer, Kernbohren	85.5	77	51	6	34	CHF 940,200	CHF 3'762'000	123	492
		A2	Trennen	Stanzen, Schneiden	Stanzmaschine, Tafelschere	65	13	34	9	22				
						/6	16	ŧ,	D	5	CHF 627'000	CHF 2'508'000	82	328
				Elektrowerkzeuge	Bohrmaschine, Kreissäge	20	18	12	2	80	CHF 220'000	CHF 880'000	29	115
	•			Biegen	Blechbearbeitung, Falzen	0	0	0	0	0	CHF 0	CHF0	0	0
⋖		A3	Umformen	Walzen	Kalibrieren, Profilherstellung	0	0	0	0	0	0 JHO	OHE 0	0	0
				Pressen	Formpresse, Prägen	17	15	10	2	7	CHF 187'000	CHF 748'000	24	98
	•			Einpresse	Nieten, Nageln, Crimpen	0	0	0	0	0	CHF 0	CHF 0	0	0
				Handling	Industrieroboter	0	0	0	0	0	CHF 0	CHF0	0	0
		A4	Fügen	Montieren	Bestückungsautomat, Webmaschine	0	0	0	0	0				
											CHF0	CHF0	0	0
				Verpacken	Verpackungsautomat, Couvertieren	0	0	0	0	0	0 JHD	CHFO	0	0
	•	A5	Beschichten	Oberfächenbehandlung	Druckmaschine, Lackierautomat	0	0	0	0	0	0 JHO	CHF 0	0	0
Verfahi	Verfahrenstechnik			Zerkleinern	Mahlen, Hacken, Mixer	190	171	114	19	92	CHF 2'090'000	CHF 8'360'000	274	1,094
(Verände	(Veränderung der	1	Troppop	Entwässern	Zentrifuge, Auspressen	0	0	0	0	0	OHE 0	CHF 0	0	0
Figenschaften)	aften	10	ע	Reinigen	Bürsten, Kratzen	38	34	23	4	15	CHF 418,000	CHF 1'672'000	55	219
				Sortieren	Rütteln, Sieben	0	0	0	0	0	0 JHO		0	0
		_		Verdichten	Extruder, Vibrator	0	0	0	0	0	CHF 0		0	0
		_		Umwälzen	Mischtrommel	0	0	0	0	0	CHF0	CHFO	0	0
00		B2	Mischen	Rühren	Rühnwerk	190	171	114	19	76	CHF 2'090'000	CHF 8'360'000	274	1,094
				Rütteln	Betonverdichter	0	0	0	0	0	0 JHD	CHF 0	0	0
		8		Kneten	Teigherstellung, Conge	06	81	54	6	36	CHF 990,000	CHF 3'960'000	130	518
		6	nagawag	Wickler	Haspel. Spulen	0	0	0	0	0	CHFO		0	0
					Auswuchten, Ausgleichen	0	0	0	0	0	CHFO		0	0
Förden	Fördertechnik			Personen	Lift, Rolltreppe									
(Veränd	(Veränderung der	Ü	Transport			176	158	106	18	20	CHF 1'936'000	CHF 7'744'000	253	1,014
C Position				Stückgut	Kran, Band, Lagertechnik	222.3	200	133	22	89	CHF 2'445'300	CHF 9'781'200	320	1,280
				Schüttgut	Förderband, Vibrorinne	37.7625	34	23	4	15	CHF 415'388	CHF 1'661'550	54	218
		٥	Position	Bauelemente	Türen, Storen	0	0	0	0	0	CHF 0		0	0
		;	longo.	Absperrelemente	Klappen, Ventile	0	0	0	0	0	CHF 0	CHF 0	0	0
Summe/Anzahl			10	30		1203.5625	1083	722	120	481	CHF 13'239'188	CHF 52'956'750	1,733	6,933

Mittels Recherchen und Abklärungen wurden zwei potenziell relevante Technologien ermittelt, die nachstehend beschrieben und bewertet werden.

3.4 Frequenzumrichter

3.4.1 Direkte Drehmomentregelung für AC-Antriebe am Beispiel der ABB DTC-Technologie

Diese Technologie wurde als Alternative zur herkömmlichen Pulsweitenmodulation (PWM) entwickelt. Sie soll in spezifischen Anwendungen eingesetzt werden und dabei verschiedene Vorteile bringen. Die DTC-Technologie kommt ohne Modulator aus und benötigt keinen Drehzahl-/ Positionsgeber zur Rückmeldung des IST-Wertes. Damit kann der AC-Antrieb auch in spezifischen Anwendungen von DC-Antrieben eingesetzt werden. Ein Hauptanwendungsgebiet liegt in Papierfabriken, wo der Transport des Papiers eine extrem präzise Regelgüte bezüglich Drehzahl-/Drehmomentanpassung verlangt. Der Einsatz in Antrieben mit konstanter Drehzahl zur Steigerung der Energieeffizienz ist in der Literatur nicht explizit beschrieben. Grundsätzlich ist bei dieser Technologie das Potenzial zur Reduktion des Energieverbrauchs bei Anwendungen mit konstanter Drehzahl sehr beschränkt.

3.5 Variable Spannungsversorgung

3.5.1 cos Phi und Drehmomentregelung am Beispiel der PowerSines-SinuMEC-Technologie

Diese Technologie dient ausschliesslich dem Zweck, bei AC-Antrieben mit konstanter Drehzahl und variabler Last Energie einzusparen. Dies wird erreicht, indem die Spannung mittels Spulen verändert wird. Die Technologie ist nicht zu vergleichen mit den bekannten Ansätzen und Produkten, welche die Spannung um einige wenige Prozent reduzieren, um den Energiebedarf von ohmschen Verbrauchern zu reduzieren. Die Spannung wird substanziell, in mehreren Stufen, um bis zu 180 V reduziert (von 400V). Der Regler folgt dabei dem erforderlichen Drehmoment an der Welle. Dadurch erhöhen sich der cos Phi und der Wirkungsgrad. Die Modulation der Spannung wird durch verschiedene Schaltungen von Spulen erreicht. Der Verzicht auf den Einsatz von Leistungselektronik-Bauteilen (wie Thyristoren) führt zu einer deutlich besseren Netzqualität als mit Frequenzumrichtern.

3.6 Technologievergleich

	Frequenzumrichter (DTC)	Variable
		Spannungsversorgung
Netzqualität	Schlecht, da Spannungspulse,	Sehr gut, da Modulation
	Oberwellen und induzierte	nur mittels Spulen, hat
	Ströme. Daher verschiedene	sogar die Wirkung einer
	Schutzvorrichtungen	Netzdrossel und
	erforderlich	verbessert die
		Netzqualität für den
		Antrieb
Elektrisches	25% Last = 10%	25% Last = 30–40%
Einsparpotenzial	Einsparungen	Einsparungen
(gem. Herstellerangaben)	50% Last = 2% Einsparungen	50% Last = 20–30%
		Einsparungen
Komplexität der	Hoch bis sehr hoch,	Niedrig,
Technologie	mikroprozessorgesteuerte	mikroprozessorgesteuerte
	Leistungselektronik mit	Relaisschaltungen auf
	diversen Regelkreisen	verschiedene Spulen-
		Anordnungen mit einem
		Regelkreis
Initialkosten Verhältnis	100%	100%

Tabelle 2: Vergleich der Technologien

Aufgrund dieser Ausgangslage haben wir entschieden, die Energieeinsparpotenziale der vielversprechenden Technologie der variablen Spannungsversorgung mittels Messungen an Pilotanlagen zu verifizieren.

4 Messverfahren

4.1 Ziel der Messung

Ermittelt wird die Differenz des elektrischen Energieverbrauchs deltaEz [Ws] von Drehstrom-Asynchron-Antrieben vor und nach einer Modifikation des Systems. Damit soll die Wirksamkeit der Modifikation hinsichtlich der Reduktion des Energieverbrauchs des gemessenen Antriebs nachgewiesen werden.

4.2 Messvorgehen

Die Anwendung muss mit einem möglichst reproduzierbaren Lastgang im Zustand vor jeglichen Modifikationen gemessen werden. Nach der Installation der Modifikation wird die Anwendung erneut bei einem idealerweise gleichen Lastgang gemessen.

Aus dem dabei ermittelten Unterschied der Energieverbräuche wird das Einsparpotenzial der Modifikation abgeleitet.

4.3 Dauer der Messung (Zeitraum)

Die Messungen werden jeweils während eines repräsentativen Zeitraums durchgeführt. Dieser unterscheidet sich je nach Anwendung sehr stark. Bei einer Kunststoffspritzgussmaschine mit einer Zykluszeit von 20 Sekunden genügt eine Messdauer von 5 Minuten, bei einer Rolltreppe in einem Einkaufszentrum muss während eines ganzen Tages gemessen werden.

4.4 Messgrössen

Es ist sicherzustellen, dass mit den gemessenen Grössen der Energieverbrauch in einem spezifischen Zeitraum korrekt ermittelt werden kann. Dazu müssen bei der Anwendung mit einem Antrieb folgende Messstellen installiert und aufgezeichnet werden:

- Spannung U in Volt pro Phase (3x)
- Strom I in Ampere pro Phase (3x)
- Leistungsfaktor cos Phi pro Phase (3x)
- Zeit t in Sekunden während des Messzeitraums

4.5 Messaufbau/Messstellen

Je nach Verdrahtung beziehungsweise Anschluss des Antriebs an das Netz können zwei unterschiedliche Messstellen gewählt werden.

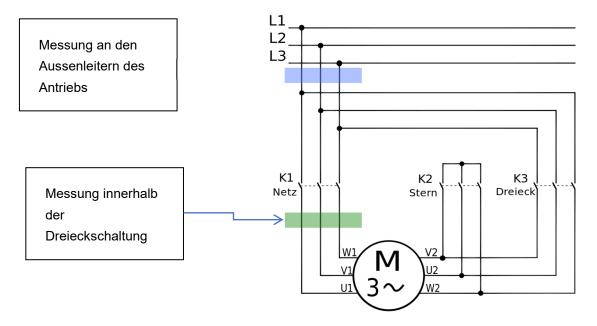


Abbildung 3: Anschlussplan

4.5.1 Messung an den Aussenleitern des Antriebs

Sowohl die Stromzangen als auch die Spannungsklemmen werden direkt an der Anschlussleitung des Antriebs vom Netz wegführend angelegt.

4.5.2 Messung innerhalb der Dreieckschaltung

Sowohl die Stromzangen als auch die Spannungsklemmen werden an einem der Dreileiterpaare angelegt, welche direkt am Motorklemmbrett abgegriffen werden können.

HINWEIS:

Die Entscheidung, an welcher Stelle die Messung durchzuführen sei, ist primär von der Zugänglichkeit der elektrischen Zuleitungskabel abhängig, um eine einfache und sichere Messinstallation zu gewährleisten.

Wenn eine Messung innerhalb der Dreieckschaltung vorgenommen wird, so sind in der Auswertung die gemessenen Strangströme I mit dem Faktor Wurzel 3 zu multiplizieren. Damit kann auf den entsprechenden Aussenleiterstrom geschlossen werden. Grundsätzlich ist klar zu empfehlen, die Messung an den Aussenleitern durchzuführen.

Falls die Modifikation ebenfalls innerhalb der Dreieckschaltung installiert wurde, ist zu berücksichtigen, dass die Wiederholmessung zur Ermittlung der Differenz des elektrischen Energieverbrauchs deltaEz [Ws] an den Aussenleitern erfolgen muss. Bei einer Messung innerhalb der Dreieckschaltung könnten durch einseitig veränderte elektrische Werte unterschiedliche Strangströme an den Dreileiterpaaren auftreten, was zu einem falschen Messergebnis führen würde.

4.6 Auswertung und Ermittlung der Differenz des Energieverbrauchs

Der elektrische Energieverbrauch soll wie folgt ermittelt werden:

Das Messgerät zeigt tabellarisch die durchschnittlichen Werte während jeweils einer Sekunde über die gesamte Messdauer. Daraus wird für jede Sekunde die durchschnittliche elektrische Leistungsaufnahme gemäss obenstehender Formel berechnet.

$$M = P2/(2 * PI * n) [Nm]$$

Anhand der mechanischen Leistung und der Drehzahl n [1/s] wird das Drehmoment an der Welle berechnet. Da die mechanische Leistung als Messergebnis nicht vorliegt, sondern über den ebenfalls nicht vorhandenen Motorwirkungsgrad im extremen Teillastbereich ermittelt werden muss, wurde folgendes Vorgehen gewählt. Der Motorwirkungsgrad wurde mit 5% für alle Leistungen kleiner als 1kW und mit 30% für Leistungen von 1 bis 4.77kW angenommen.

$$E = P1 * t [Ws]$$

Anhand der Leistung pro Sekundenwert wird gemäss obenstehender Formel der elektrische Energieverbrauch pro Sekunde des repräsentativen Zeitraums berechnet.

Ez = Summe aller E [Ws]

Bezogen auf die Dauer des repräsentativen Zeitraums wird der dabei angefallene elektrische Energieverbrauch berechnet.

$$P1d = (Ez/t) * 3600 [W]$$

Für die Beurteilung der Jahresarbeit, zusammen mit den Jahres-Betriebsstunden, und des durchschnittlichen Auslastungsgrades des Antriebs kann die durchschnittliche elektrische Leistung P1d herangezogen werden.

Die Werte Ez [Ws] vor und nach der Modifikation werden miteinander verglichen, die Differenz deltaEz [Ws] entspricht der Energieeinsparung, die aus der Modifikation resultiert.

4.6.1 Messgerät

Das von uns für die Messungen verwendete Gerät ist ein Chauvin Arnoux Typ CA 8331 Poweranalyzer für elektrische Drehfelder. Es werden weiter drei Stromzangen desselben Herstellers Typ MN93 (500 mA–200 A) eingesetzt.

Abbildung 4: verwendetes Messgerät

5 Pilotanlage

Gemäss Projektbeschrieb wird die erste Verifizierung des Energiesparpotenzials an einer Kunststoffspritzgussmaschine vorgenommen.

5.1 Objekt und Anlagedaten

Kunde	Pfister Werkzeugbau AG
Maschinenhersteller	Engel
Typenbeschreibung	Victory 330/130 Tech (2008)
Betriebsstunden pro Tag	20
Tage pro Woche	6
Wochen pro Jahr	50
Produzierter Artikel	Verschlusskappe
TT Total Zykluszeit in Sekunden	20.1
T1 Werkzeug schliessen + Düse vor in Sekunden	2.81
T2 Einspritzzeit in Sekunden	2.19
T3 Nachdruckzeit in Sekunden	3.0
T4 Dosierzeit in Sekunden	4.24
T5 Kühlzeit in Sekunden	6.1
T6 Werkzeug öffnen und Verweilzeit in Sekunden	5.28
Pm Durchschnittspreis pro CHF/kWh	0.11

Tabelle 3: Objekt- und Anlagedaten

5.2 Nenndaten des Antriebs

Der Antrieb wird mittels Stern-Dreieck-Startvorrichtung angefahren.

<u>R</u>	BG	<i>D</i> r	n.	cosq	I _n	Ma	M _a /M _a	J _a ∕I _n	M _k /M _a	J	m
kW	-	U/min	%	-	Α	Nm.	Nm/Nm.	A/A	Nm/Nm.	kgm²	kg
22	180 L	1460	91.2	0.85	41	144	2.3	7.0	3.0	0.15	180

Tabelle 4: Antriebsdaten

INVENTAR NR

OBS7

INVENTAR NR

T 81632

INVENTAR SOURT SOUR

Abbildung 5: Zykluszeit des Produkts

Abbildung 7: Spritzgussmaschine

Abbildung 6: Spritzgussmaschine

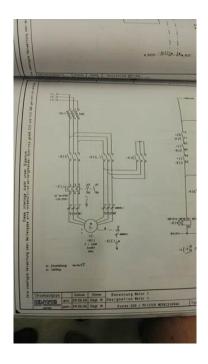


Abbildung 8: Elektroschema, Antrieb

Abbildung 9: Produktfoto

Abbildung 10: Anschlussstelle Messung

5.1 Messresultate

5.1.1 Kennliniendarstellung der Initialmessung vor der Modifikation

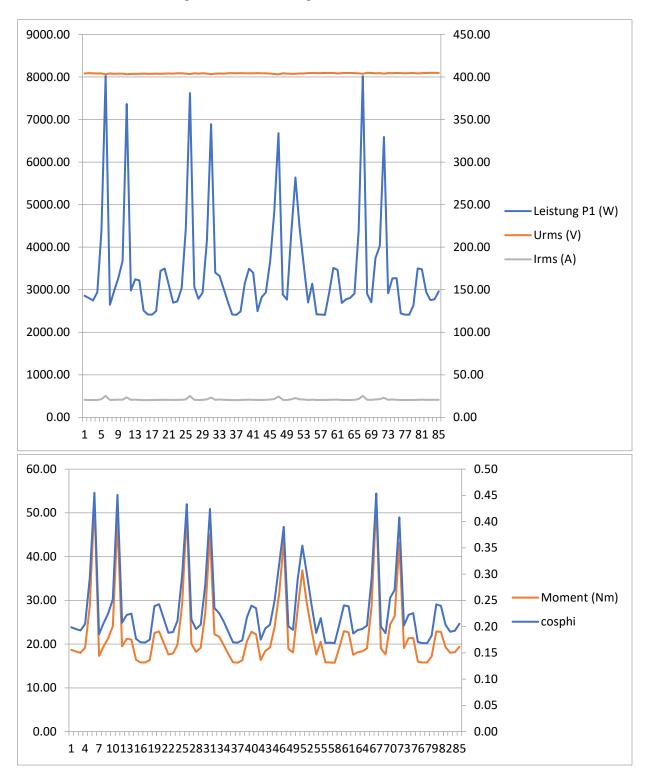
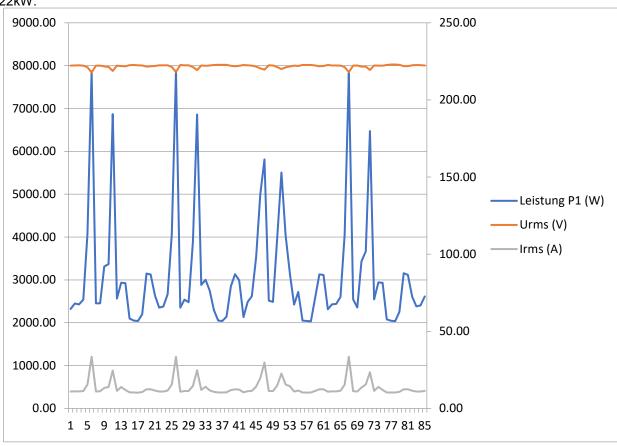


Abbildung 12: Werte vor der Modifikation als Kennlinien

5.1.2 Messwerte und berechnete Werte der Initialmessung vor der Modifikation

Die nachfolgende Tabelle zeigt die Werte von 4 repräsentativen Zyklen. Die Gesamtmessdauer zur Ermittlung des durchschnittlichen Energieverbrauchs betrug 5 Minuten.


						Drehzahl	Energie
Zeit (s)	Leistung P1 (W)	Ums. (V)	Loose (A)	cosphi	Moment (Nm)	(1/min)	(Ws)
407	2857.29	404.27	20.54	0.20	18.69	1460.00	0.79
408		404.50	20.49	0.20	18.34	1460.00	1.57
409		404.33	20.37	0.19	17.98	1460.00	2.34
410		404.10	20.48	0.21	19.22	1460.00	3.15
411		404.17	21.43	0.29	28.68	1460.00	4.37
412		403.23	25.25	0.46	52.48	1460.00	6.60
413		404.13	20.37	0.19	17.32	1460.00	7.33
414		403.90	20.56	0.21	19.41	1460.00	8.16
415		404.07	20.76	0.23	21.38	1460.00	9.07
416		404.00	20.86	0.25	24.06	1460.00	10.09
417 418		403.17 403.67	23.38 20.55	0.45	48.17 19.51	1460.00 1460.00	12.13 12.96
419		403.87	20.86	0.21	21.22	1460.00	13.86
420		403.77	20.48	0.22	21.04	1460.00	14.76
421		403.77	20.40	0.18	16.42	1460.00	15.46
422		403.77	20.33	0.17	15.81	1460.00	16.13
423		403.83	20.35	0.17	15.80	1460.00	16.80
424		403.93	20.38	0.18	16.35	1460.00	17.49
425		403.80	20.61	0.24	22.53	1460.00	18.45
426		403.93	20.61	0.24	22.89	1460.00	19.42
427		404.10	20.58	0.22	20.32	1460.00	20.28
428		404.00	20.45	0.19	17.63	1460.00	21.03
429		404.47	20.53	0.19	17.84	1460.00	21.79
430	3038.73	404.30	20.53	0.21	19.88	1460.00	22.63
431	4429.31	403.97	21.27	0.30	28.97	1460.00	23.86
432	7621.70	403.50	25.17	0.43	49.85	1460.00	25.98
433	3070.99	404.43	20.55	0.21	20.09	1460.00	26.83
434		404.07	20.37	0.20	18.22	1460.00	27.61
435		404.37	20.55	0.20	19.18	1460.00	28.42
436		403.93	21.17	0.28	27.22	1460.00	29.58
437		403.30	23.26	0.42	45.07	1460.00	31.49
438		403.97	20.65	0.24	22.24	1460.00	32.44
439		404.17	21.01	0.23	21.74	1460.00	33.36
440		404.03	20.58	0.21	19.75	1460.00	34.20
441		404.33	20.41	0.19	17.73	1460.00	34.95
442 443		404.60 404.43	20.31	0.17	15.82	1460.00	35.62
		404.43	20.31	0.17	15.76	1460.00	36.29
444 445		404.60	20.43 20.70	0.17 0.22	16.29 20.67	1460.00 1460.00	36.99 37.86
446		404.40	20.70	0.24	22.84	1460.00	38.83
447		404.47	20.77	0.24	22.22	1460.00	39.78
448		404.53	20.33	0.18	16.34	1460.00	40.47
449		404.30	20.51	0.20	18.47	1460.00	41.26
450		404.30	20.58	0.20	19.20	1460.00	42.07
451		404.00	20.95	0.25	23.97	1460.00	43.09

452	4846.26	403.63	21.64	0.32	31.70	1460.00	44.44
453	6678.82	403.07	24.53	0.39	43.68	1460.00	46.29
454	2889.10	404.30	20.56	0.20	18.90	1460.00	47.09
455	2766.39	404.03	20.38	0.19	18.09	1460.00	47.86
456	4283.88	403.80	21.10	0.29	28.02	1460.00	49.05
457	5637.83	403.73	22.75	0.35	36.87	1460.00	50.62
458	4456.02	404.27	21.26	0.30	29.15	1460.00	51.86
459	3539.11	404.17	21.01	0.24	23.15	1460.00	52.84
460	2697.98	404.63	20.48	0.19	17.65	1460.00	53.59
461	3140.19	404.70	20.74	0.22	20.54	1460.00	54.46
462	2419.98	404.53	20.44	0.17	15.83	1460.00	55.13
463	2416.45	404.53	20.37	0.17	15.81	1460.00	55.80
464	2406.55	404.80	20.35	0.17	15.74	1460.00	56.47
465	2931.88	404.83	20.53	0.20	19.18	1460.00	57.29
466	3510.89	404.73	20.81	0.24	22.96	1460.00	58.26
467	3467.93	404.17	20.76	0.24	22.68	1460.00	59.23
468	2686.69	404.63	20.50	0.19	17.57	1460.00	59.97
469	2775.21	404.80	20.47	0.19	18.15	1460.00	60.74
470	2808.48	404.83	20.47	0.20	18.37	1460.00	61.52
471	2910.83	404.60	20.60	0.20	19.04	1460.00	62.33
472	4385.18	404.37	21.47	0.29	28.68	1460.00	63.55
473	8020.17	403.80	25.28	0.45	52.46	1460.00	65.78
474	2902.16	404.90	20.66	0.20	18.98	1460.00	66.58
475	2702.64	404.67	20.58	0.19	17.68	1460.00	67.33
476	3746.39	404.37	20.98	0.26	24.50	1460.00	68.37
477	4028.94	404.53	21.30	0.27	26.35	1460.00	69.49
478	6590.85	404.00	23.07	0.41	43.11	1460.00	71.32
479	2917.30	404.63	20.61	0.20	19.08	1460.00	72.13
480	3268.81	404.57	20.95	0.22	21.38	1460.00	73.04
481	3269.93	404.80	20.67	0.23	21.39	1460.00	73.95
482	2443.05	404.60	20.43	0.17	15.98	1460.00	74.63
483	2415.00	404.43	20.44	0.17	15.80	1460.00	75.30
484	2414.17	404.57	20.47	0.17	15.79	1460.00	75.97
485	2629.23	404.70	20.50	0.18	17.20	1460.00	76.70
486	3501.41	404.10	20.64	0.24	22.90	1460.00	77.67
487	3482.55	404.57	20.74	0.24	22.78	1460.00	78.64
488	2947.27	404.80	20.67	0.20	19.28	1460.00	79.46
489	2755.30	404.93	20.64	0.19	18.02	1460.00	80.23
490	2773.14	404.93	20.59	0.19	18.14	1460.00	81.00
491	2962.36	404.93	20.57	0.21	19.38	1460.00	81.82

Tabelle 5: Werte vor der Modifikation als Datentabelle

5.1.3 Kennliniendarstellung der Initialmessung nach der Modifikation

Darstellung von 4 Zyklen (85 s) der Kunststoffspritzgussmaschine Nr. 14. Motornennleistung P2 = 22kW.

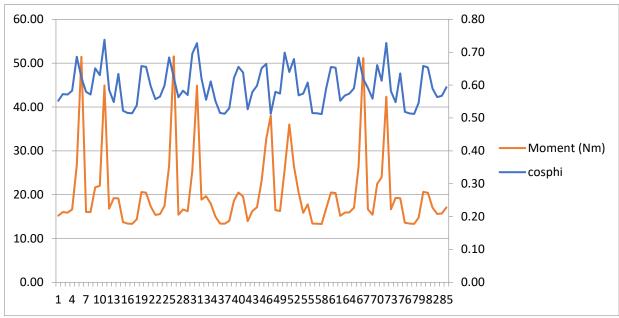


Abbildung 13: Werte nach der Modifikation als Kennlinien

5.1.4 Messwerte und berechnete Werte der Initialmessung nach der Modifikation

Die nachfolgende Tabelle zeigt die Werte von vier repräsentativen Zyklen. Die Gesamtmessdauer zur Ermittlung des durchschnittlichen Energieverbrauchs betrug 5 Minuten.

						Drehzahl	Energie
Zeit (s)	Leistung P1 (W)	Ums. (V)	Loose (A)	cosphi	Moment (Nm)	(1/min)	(<u>W</u> 5)
123	2321.99	222.20	10.92	0.55	15.19	1460.00	0.64
124	2450.08	222.40	11.11	0.57	16.03	1460.00	1.33
125	2427.18	222.50	11.03	0.57	15.88	1460.00	2.00
126	2539.55	222.23	11.32	0.58	16.61	1460.00	2.71
127 128	4075.80 7868.92	221.20 217.83	15.50 33.48	0.69 0.62	26.66 51.47	1460.00 1460.00	3.84 6.02
129	2452.59	222.27	11.00	0.58	16.04		6.70
130	2453.94	222.20	11.17		16.05		7.39
131	3314.08	221.77	13.25	0.65	21.68		8.31
132	3369.88	221.43	13.95	0.63	22.04		9.24
133	6870.15	218.87	24.56	0.74	44.93	1460.00	11.15
134	2566.90	222.23	11.38	0.59	16.79	1460.00	11.86
135	2935.45	221.93	13.93	0.55	19.20	1460.00	12.68
136	2923.64	221.87	12.00	0.63	19.12	1460.00	13.49
137	2099.85	222.53	10.44	0.52	13.73	1460.00	14.08
138	2048.43	222.67	10.31	0.52	13.40		14.64
139 140	2040.95	222.50	10.30	0.51 0.54	13.35	1460.00 1460.00	15.21
141	2200.90 3148.24	222.33 221.63	10.61 12.47	0.66	14.40 20.59	1460.00	15.82 16.70
142	3127.68	221.80	12.42	0.66	20.46	1460.00	17.57
143	2649.20	222.07	11.55	0.60	17.33	1460.00	18.30
144	2350.84	222.47	10.95	0.56	15.38		18.95
145	2378.87	222.47	10.93	0.56	15.56		19.62
146	2664.78	222.43	11.56	0.60	17.43	1460.00	20.36
147	4070.60	221.43	15.52	0.68	26.62	1460.00	21.49
148	7884.26	218.13	33.46	0.62	51.57		23.68
149	2354.07	222.70	10.84	0.56	15.40	1460.00	
150	2539.97	222.47	11.31	0.58	16.61	1460.00	25.04
151 152	2480.40	222.47 221.37	11.29 14.61	0.57 0.70	16.22 25.48	1460.00	25.72 26.81
153	3896.06 6860.27	219.33	24.82	0.70	44.87	1460.00 1460.00	28.71
154	2881.73	222.40	12.05	0.62	18.85	1460.00	29.51
155	3002.74	222.17	14.06	0.56	19.64		30.35
156	2750.12	222.37	11.68	0.61	17.99	1460.00	31.11
157	2295.30	222.70	10.78	0.55	15.01	1460.00	31.75
158	2048.39	222.73	10.30	0.52	13.40	1460.00	32.32
159	2041.39	222.77	10.32	0.51	13.35	1460.00	32.88
160	2141.76		10.47		14.01	1460.00	
161	2848.32	222.10	11.92	0.62	18.63	1460.00	34.27
162	3133.47	221.80	12.44	0.66	20.49		35.14
163 164	2992.18 2131.41	222.13 222.67	12.18 10.50	0.64 0.53	19.57 13.94	1460.00 1460.00	35.97 36.56
165	2486.47	222.43	11.15	0.58	16.26	1460.00	37.26
166	2616.79	222.43	11.13	0.50	17.12	1460.00	37.20
167	3538.12	221.63	14.14	0.65	23.14	1460.00	38.96

168	5002.46	220.53	19.72	0.66	32.72	1460.00	40.35
169	5812.91	219.70	29.80	0.51	38.02	1460.00	41.97
170	2516.14	222.43	11.27	0.58	16.46	1460.00	42.67
171	2486.01	222.40	11.24	0.57	16.26	1460.00	43.36
172	3943.02	221.30	14.72	0.70	25.79	1460.00	44.45
173	5505.88	220.07	22.57	0.64	36.01	1460.00	45.98
174	4044.29	221.13	15.54	0.68	26.45	1460.00	47.11
175	3140.95	221.73	14.37	0.57	20.54	1460.00	47.98
176	2421.91	222.27	10.96	0.57	15.84	1460.00	48.65
177	2720.18	222.03	11.64	0.61	17.79	1460.00	49.41
178	2051.74	222.67	10.34	0.51	13.42	1460.00	49.98
179	2041.82	222.67	10.29	0.51	13.35	1460.00	50.54
180	2032.90	222.63	10.30	0.51	13.30	1460.00	51.11
181	2592.89	222.33	11.38	0.59	16.96	1460.00	51.83
182	3130.76	221.83	12.44	0.66	20.48	1460.00	52.70
183	3116.11	222.07	12.41	0.65	20.38	1460.00	53.56
184	2315.51	222.67	10.87	0.55	15.14	1460.00	54.21
185	2430.15	222.33	11.12	0.57	15.89	1460.00	54.88
186	2440.31	222.40	11.04	0.57	15.96	1460.00	55.56
187	2601.47	222.27	11.45	0.59	17.02	1460.00	56.28
188	4058.76	221.30	15.47	0.68	26.55	1460.00	57.41
189	7825.20	217.97	33.50	0.62	51.18	1460.00	59.58
190	2548.54	222.23	11.20	0.59	16.67	1460.00	60.29
191	2356.51	222.33	10.96	0.56	15.41	1460.00	60.95
192	3432.84	221.67	13.53	0.66	22.45	1460.00	61.90
193	3667.83	221.63	15.59	0.61	23.99	1460.00	62.92
194	6473.70	219.47	23.39	0.73	42.34	1460.00	64.72
195	2547.59	222.40	11.37	0.58	16.66	1460.00	65.43
196	2943.70	222.27	13.95	0.55	19.25	1460.00	66.24
197	2933.00	222.23	11.99	0.64	19.18	1460.00	67.06
198	2079.69	222.67	10.40	0.52	13.60	1460.00	67.64
199	2046.91	222.93	10.31	0.51	13.39	1460.00	68.20
200	2040.57	222.97	10.31	0.51	13.35	1460.00	68.77
201	2256.64	222.80	10.72	0.55	14.76	1460.00	69.40
202	3156.54	221.93	12.47	0.66	20.65	1460.00	70.27
203	3119.09	221.93	12.41	0.65	20.40	1460.00	71.14
204	2605.06	222.43	11.48	0.59	17.04	1460.00	71.86
205	2382.95	222.63	10.96	0.56	15.59	1460.00	72.53
206	2403.20	222.60	10.99	0.57	15.72	1460.00	73.19
207	2614.24	222.37	11.43	0.59	17.10	1460.00	73.92

Tabelle 7: Werte nach der Modifikation als Datentabelle

5.2 Erkenntnisse aus den Messungen

Energieverbrauch ohne Modifikation = 81.82 Ws (im dargestellten Bereich von 4 Zyklen)

Energieverbrauch mit Modifikation = 73.92 Ws (im dargestellten Bereich von 4 Zyklen)

Einsparung durch die Modifikation = 9.66 %

Dieser Wert deckt sich mit der Betrachtung über den gesamten Messzeitraum von jeweils 5 Minuten.

Mit dem aktuell aufgebauten Werkzeug mit einer Zykluszeit von 20 Sekunden kann im vorliegenden Fall (6000 Betriebsstunden pro Jahr) Energie im Umfang von **2007.53 kWh pro Jahr** eingespart werden.

Der Vergleich der Messwerte zeigt, dass der cos Phi durch die Absenkung der Spannung, in diesem Fall von 400 V auf 220 V, stark angehoben werden kann, nämlich von 0.17 bis 0.43 vor der Modifikation auf 0.51 bis 0.74 nach der Modifikation. Der Wirkungsgrad des Motors wird dadurch optimiert, speziell in Zykluszeiten mit sehr geringer Leistungsaufnahme. Die SinuMEC-Regeleinheit verharrte während der gesamten Betriebsdauer auf der maximalen Stufe der Spannungsabsenkung (220 V), weil das aktuell aufgebaute Werkzeug nur einen Bruchteil der maximal zur Verfügung stehenden Leistung benötigt.

Die Auswertung der Messergebnisse führt weiter zum Schluss, dass bei einer längeren Zyklusdauer markant höhere Einsparungen erzielt werden, da dort auch die Zeitbereiche mit niedriger Belastung um ein Mehrfaches grösser ausfallen.

Fazit Pilotanlage

Es konnte grundsätzlich nachgewiesen werden, dass aus der Veränderung des cos Phi durch Spannungsabsenkung mittels eines SinuMEC-Geräts bei einer Anwendung mit konstanter Drehzahl und variabler Last eine Energieeinsparung resultiert. Die Einsparung ist stark abhängig von der Zykluszeit des Werkzeugs einer Kunststoffspritzgussmaschine. Der Einsatz dieser Technologie ist vor allem bei hohen Zykluszeiten (> 30 Sekunden) sinnvoll, da dort die Einsparung prozentual am höchsten ausfällt. Wie sich die Zykluszeit bezogen auf die Einsparung genau verhält, kann im weiteren Verlauf dieses Projekts verifiziert werden.

6 Labormessreihe

6.1 Messkonzept

6.1.1 Ziel der Messreihe

Anhand der ausgewerteten Messergebnisse kann für beliebige Lastfälle die voraussichtliche Einsparung durch den Einsatz der unterschiedlichen Technologien ermittelt werden. Zudem ist eine Beurteilung hinsichtlich potenzieller Einsatzgrenzen und Wirkungsweisen der Technologien möglich.

Es werden dabei 11 Messkennlinien mit unterschiedlichen Belastungsverläufen für folgende Technologien aufgezeichnet:

Motor ohne vorgeschaltete Technologie (direkt am Netz)

Motor mit DTC-Frequenzumrichter

Motor mit SinuMEC jeweils auf den Save-Stufen 1 und 2

Dabei werden sowohl die elektrischen Eingangswerte als auch die mechanischen Ausgangswerte aufgezeichnet. Daraus lässt sich der Systemwirkungsgrad der verschiedenen Technologien in unterschiedlichen Lastfällen ermitteln.

Zur Verifizierung/Plausibilisierung der Messung wird eine Feld-Messkennlinie nachgemessen (Leistungsverlauf Spritzgussmaschine). Diese Messung haben wir 1:1 in einer Produktionsanlage an einer Spritzgussmaschine aufgenommen. Damit soll auch beurteilt werden, wie sich die Ergebnisse bezüglich der Skalierbarkeit der Motorgrösse Pn verhalten.

Als Prüfling wird ein 2-poliger 15-kW-Motor mit niederer Effizienzklasse (IE0/IE1) verwendet.

Der nachstehend beschriebene Motorenprüfstand der HSR erfüllt unsere Anforderungen an die Messungen vollumfänglich.



Abbildung 15: zu messende Belastungsverläufe

6.2 Messaufbau

Für die Messung des System-Wirkungsgrades wurde ein 15-kW-Asynchronmotor (Delta-Schaltung) mit einer Wirkungsgradklasse von IE0/IE1 ausgewählt, um die Varianten «direkt am Netz», «am SinuMEC» und «an einem DTC-Frequenzumrichter» miteinander zu vergleichen. Der Motor wurde mit 3 x 400V/50Hz betrieben.

6.2.1 Prüfanlage

Die Prüfanlage hat eine Leistung von 30 kW, ein maximales Drehmoment von 193 Nm und eine maximale Rotationsgeschwindigkeit von +/–4500 rpm. Die Messung der Drehzahl und des Drehmoments erfolgt direkt ab den entsprechenden Sensoren, welche mit +/–10 VDC Ausgangsspannung arbeiten. Folgende Komponenten wurden für die Messung der mechanischen Parameter verwendet:

a. Lastmaschine: ABB Asynchronmaschine, Typ M3BP 200 MLA 4

b. Drehmomentsensor: Kistler KiTorq Rotor, Typ 4550A

c. Drehzahlsensor: Optischer Inkrementalgeber mit Impulsspannungswandler

Abbildung 16: Prüfanlage HSR

6.2.2 Messausrüstung

Die elektrischen Parameter der Prüfanlage und des Netzes wurden mit einem 14-Kanal-Leistungsmessgerät von Dewetron aufgenommen. Dabei wurden 3 High-Voltage-Kanäle für die Netzspannung und 5 Low-Voltage-Kanäle für die Ströme, die Drehzahl und das Drehmoment verwendet. Die Spannungs-, Drehzahl- und Drehmomentsignale wurden direkt am Leistungsmessgerät angeschlossen. Die Ströme wurden über Stromwandler und Verstärker am Gerät angeschlossen. Die Messausrüstung beinhaltet folgende Komponenten:

d. Leistungsmessgerät: Dewetron, Typ DEWE-2600

e. High-Voltage-Messkarten: HSI-HV +/-1400 V

f. Low-Voltage-Messkarten: HSI-LV +/-50 V

g. Verstärker: Dewetron, Power-Supply Typ PM-MCTSh. Stromwandler: Dewetron, Transducer Typ PM-MCTS 200

Abbildung 17: Messausrüstung

6.2.3 Technologien zur Energieoptimierung

6.2.3.1 SinuMEC

Der SinuMEC verfügt über 3 Spannungslevel (Save 2, Save 1 und Bypass), die automatisch beim Anlauf aktiviert werden und im Betrieb über die Messung von Strom und Leistungsfaktor geschaltet werden. Die Spannungslevel entsprechen 220V, 300V und 400V.

Das Gerät kann über die Einstellungsoptionen an die auftretende Belastung angepasst werden.

SinuMEC V4.5 400V/50HZ/30A 0MV4-5A0300-400 SN:180448

Abbildung 19: SinuMEC

6.2.3.2 Frequenzumrichter

Der Frequenzumrichter ACS880 ist mit direkter Drehmomentregelung (DTC), einem ID-Lauf, welcher die Motorparameter automatisch erkennt, einem Energiesparmodus sowie weiteren Optionen wie Rampen, analoge/digitale Ein-/Ausgänge, Sicherheitsgrenzen etc. ausgestattet.

Abbildung 20: Typenschild DTC-FU

Abbildung 21: DTC-Frequenzumrichter

6.2.4 Messaufbau direkt am Netz

Der zu messende Asynchronmotor wird direkt an 3x400V/50Hz angeschlossen und abgangsseitig mit einer Lastmaschine gekoppelt. Die Messung der elektrischen Parameter erfolgt direkt ab Netzanschluss, diejenige der mechanischen Parameter ab Drehzahl- und Drehmomentsensor. Es gibt keine zusätzlichen Installationen.

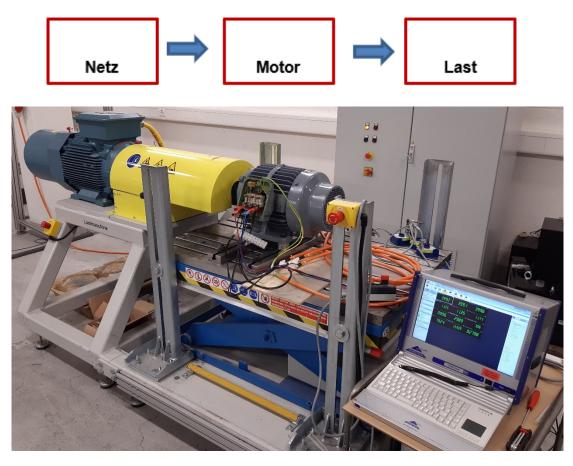


Abbildung 22: Messaufbau direkt am Netz ohne SinuMEC oder Frequenzumrichter

6.2.5 Messaufbau mit SinuMEC

Der SinuMEC wird nach der Anleitung direkt in die Dreieckschaltung des Asynchronmotors installiert. Abgangsseitig wird der Motor wieder mit der Lastmaschine gekoppelt. Die Messung der elektrischen Parameter erfolgt direkt ab Netzanschluss und diejenige der mechanischen Parameter ab Drehzahl- und Drehmomentsensor. Mit dieser Technologie werden zwei Messreihen durchgeführt: auf Stufe Save 1 bei 300 V Ausgangsspannung zum Motor und auf Stufe Save 2 bei 220 V Ausgangsspannung.

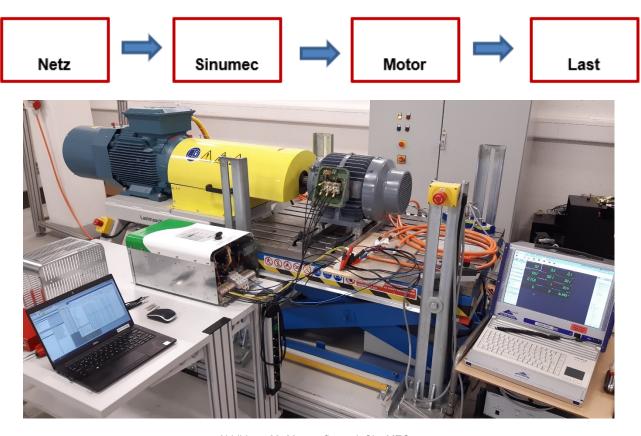
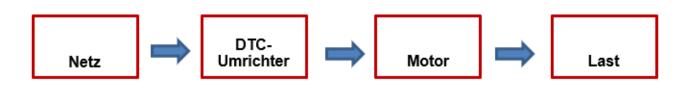



Abbildung 23: Messaufbau mit SinuMEC

6.2.6 Messaufbau mit DTC-Frequenzumrichter

Der Motor wird eingangsseitig in Serie mit einem Umrichter installiert und abgangsseitig wiederum an die Lastmaschine gekoppelt. Der Umrichter wurde im Direct-Torque-Control-Modus (DTC) betrieben. Es wurde ein Identifikationslauf (ID-Lauf) durchgeführt, um die Parameter des Motors zu messen/berechnen. Zusätzlich wurde der Energieoptimierungsbetrieb aktiviert. Die Messung der elektrischen Parameter erfolgt direkt ab Netzanschluss und diejenige der mechanischen Parameter ab Drehzahl- und Drehmomentsensor.

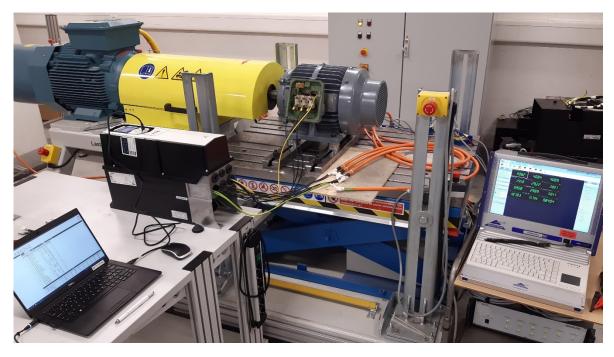


Abbildung 24: Messaufbau mit DTC-Frequenzumrichter

6.3 Messergebnisse

Für eine grundlegende Bewertung des Potenzials der Technologien zur Effizienzsteigerung werden für jede Technologievariante alle Durchschnittswerte in den verschiedenen identischen Lastfällen ermittelt. Damit ist eine Gegenüberstellung aller relevanten Parameter der individuellen Leistungskennlinien möglich.

Leistungswerte (gemessen ab Netzeinspeisung, ermittelte Durchschnittswerte aus jeweils 300 s Messdauer)

	Anteil Last	am Netz P2 mech kW	Save 1 P2 mech kW	Save 2 P2 mech kW	DTC-FU P2 mech kW	am Netz P1 el kW	Save 1 P1 el kW	Save 2 P1 el kW	DTC-FU P1 el kW
25% Last	0.25	3.94	3.94	3.92	3.98	5.43	4.80	4.70	5.06
38% Last	0.38	5.94	5.98	5.93	6.03	7.52	7.02	6.93	7.52
50% Last	0.50	7.82	7.77	7.71	7.90	9.53	9.08	9.05	9.77
63% Last	0.63	9.80	9.74	9.62	9.96	11.72	11.44	11.45	12.03
75% Last	0.75	11.63	11.50	11.33	11.80	13.78	13.65	13.79	14.13
100% Last	1.00	15.37	15.14	14.76	15.72	18.10	18.70	18.97	18.76
		am Netz	Save 1	Save 2	DTC-FU	am Netz	Save 1	Save 2	DTC-FU
	Anteil Last	ETA tot	ETA tot	ETA tot	ETA tot	cos Phi	cos Phi	cos Phi	cos Phi
	-	-	-	-	-	-	-	-	-
25% Last	0.25	0.72	0.82	0.84	0.79	0.62	0.82	0.87	0.75
38% Last	0.38	0.79	0.85	0.86	0.80	0.73	0.89	0.92	0.79
50% Last	0.50	0.82	0.86	0.85	0.81	0.80	0.92	0.93	0.83
63% Last	0.63	0.84	0.85	0.84	0.83	0.84	0.93	0.94	0.87
75% Last	0.75	0.84	0.84	0.82	0.84	0.87	0.94	0.94	0.89
100% Last	1.00	0.85	0.81	0.78	0.84	0.90	0.94	0.93	0.91
		Ī				i			
	Anteil Last	am Netz	Save 1	Save 2	DTC-FU	am Netz		Save 2	DTC-FU
	Anteil Last	I	I	I	I	U	U	U	U
	-	I A	I A	I A	I A	U V	U V	U V	U V
25% Last	0.25	I A 12.76	I A 8.17	I A 7.72	I A 9.51	U V 399.07	U V 411.48	U V 403.45	U V 407.74
38% Last	- 0.25 0.38	1 A 12.76 14.94	I A 8.17 11.05	I A 7.72 10.81	I A 9.51 13.45	U V 399.07 399.00	U V 411.48 410.48	U V 403.45 403.23	U V 407.74 408.26
38% Last 50% Last	- 0.25 0.38 0.50	1 A 12.76 14.94 17.33	I A 8.17 11.05 13.91	I A 7.72 10.81 13.87	I A 9.51 13.45 16.58	U V 399.07 399.00 398.93	U V 411.48 410.48 409.83	U V 403.45 403.23 402.98	U V 407.74 408.26 407.92
38% Last 50% Last 63% Last	0.25 0.38 0.50 0.63	I A 12.76 14.94 17.33 20.14	I A 8.17 11.05 13.91 17.25	7.72 10.81 13.87 17.46	I A 9.51 13.45 16.58 19.57	U V 399.07 399.00 398.93 398.87	U V 411.48 410.48 409.83 410.00	U V 403.45 403.23 402.98 402.42	U V 407.74 408.26 407.92 408.13
38% Last 50% Last 63% Last 75% Last	0.25 0.38 0.50 0.63 0.75	I A 12.76 14.94 17.33 20.14 22.94	I A 8.17 11.05 13.91 17.25 20.45	I A 7.72 10.81 13.87 17.46 21.10	9.51 13.45 16.58 19.57 22.51	U V 399.07 399.00 398.93 398.87 398.81	U V 411.48 410.48 409.83 410.00 411.06	U V 403.45 403.23 402.98 402.42 401.35	U V 407.74 408.26 407.92 408.13 409.16
38% Last 50% Last 63% Last	0.25 0.38 0.50 0.63	I A 12.76 14.94 17.33 20.14 22.94	I A 8.17 11.05 13.91 17.25	7.72 10.81 13.87 17.46	I A 9.51 13.45 16.58 19.57	U V 399.07 399.00 398.93 398.87	U V 411.48 410.48 409.83 410.00	U V 403.45 403.23 402.98 402.42	U V 407.74 408.26 407.92 408.13
38% Last 50% Last 63% Last 75% Last	0.25 0.38 0.50 0.63 0.75	I A 12.76 14.94 17.33 20.14 22.94	I A 8.17 11.05 13.91 17.25 20.45	I A 7.72 10.81 13.87 17.46 21.10	9.51 13.45 16.58 19.57 22.51	U V 399.07 399.00 398.93 398.87 398.81	U V 411.48 410.48 409.83 410.00 411.06 409.21	U V 403.45 403.23 402.98 402.42 401.35	U V 407.74 408.26 407.92 408.13 409.16
38% Last 50% Last 63% Last 75% Last	0.25 0.38 0.50 0.63 0.75	12.76 14.94 17.33 20.14 22.94 29.09	8.17 11.05 13.91 17.25 20.45 28.20	7.72 10.81 13.87 17.46 21.10 29.43	9.51 13.45 16.58 19.57 22.51 29.06	U V 399.07 399.00 398.93 398.87 398.81 398.70	U V 411.48 410.48 409.83 410.00 411.06 409.21	U V 403.45 403.23 402.98 402.42 401.35 400.97	U V 407.74 408.26 407.92 408.13 409.16 408.91
38% Last 50% Last 63% Last 75% Last	0.25 0.38 0.50 0.63 0.75 1.00	1 A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz	I A 8.17 11.05 13.91 17.25 20.45 28.20 Save 1	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2	I A 9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU	U V 399.07 399.00 398.93 398.87 398.81 398.70 am Netz	V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU
38% Last 50% Last 63% Last 75% Last	0.25 0.38 0.50 0.63 0.75 1.00	I A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz n	8.17 11.05 13.91 17.25 20.45 28.20 Save 1 n	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2 n	9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU n	U V 399.07 399.00 398.93 398.87 398.70 am Netz M	U V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1 M	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2 M	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU M
38% Last 50% Last 63% Last 75% Last 100% Last	- 0.25 0.38 0.50 0.63 0.75 1.00 Anteil Last	I A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz n 1/min	8.17 11.05 13.91 17.25 20.45 28.20 Save 1 n 1/min	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2 n 1/min	9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU n 1/min	U V 399.07 399.00 398.93 398.87 398.81 398.70 am Netz M Nm	U V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1 M Nm	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2 M Nm	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU M Nm
38% Last 50% Last 63% Last 75% Last 100% Last	- 0.25 0.38 0.50 0.63 0.75 1.00 Anteil Last	I A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz n 1/min 2975.75	8.17 11.05 13.91 17.25 20.45 28.20 Save 1 n 1/min 2971.67	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2 n 1/min 2960.84	I A 9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU n 1/min 2991.97	U V 399.07 399.00 398.93 398.87 398.81 398.70 am Netz M Nm 12.64	V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1 M Nm	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2 M Nm 12.65	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU M Nm 12.70
38% Last 50% Last 63% Last 75% Last 100% Last 25% Last 38% Last	- 0.25 0.38 0.50 0.63 0.75 1.00 Anteil Last	I A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz n 1/min 2975.75 2964.96	8.17 11.05 13.91 17.25 20.45 28.20 Save 1 n 1/min 2971.67 2955.93	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2 n 1/min 2960.84 2938.57	I A 9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU n 1/min 2991.97 2990.29	U V 399.07 399.00 398.93 398.87 398.70 am Netz M Nm 12.64 19.13	V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1 M Nm 12.67 19.31	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2 M Nm 12.65 19.27	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU M Nm 12.70 19.25
38% Last 50% Last 63% Last 75% Last 100% Last 25% Last 38% Last 50% Last	- 0.25 0.38 0.50 0.63 0.75 1.00 Anteil Last - 0.25 0.38 0.50	I A 12.76 14.94 17.33 20.14 22.94 29.09 am Netz n 1/min 2975.75 2964.96 2954.06	8.17 11.05 13.91 17.25 20.45 28.20 Save 1 n 1/min 2971.67 2955.93 2940.54	I A 7.72 10.81 13.87 17.46 21.10 29.43 Save 2 n 1/min 2960.84 2938.57 2915.00	I A 9.51 13.45 16.58 19.57 22.51 29.06 DTC-FU n 1/min 2991.97 2990.29 2987.53	U V 399.07 399.00 398.93 398.87 398.70 am Netz M Nm 12.64 19.13 25.28	V V 411.48 410.48 409.83 410.00 411.06 409.21 Save 1 M Nm 12.67 19.31 25.25	U V 403.45 403.23 402.98 402.42 401.35 400.97 Save 2 M Nm 12.65 19.27 25.25	U V 407.74 408.26 407.92 408.13 409.16 408.91 DTC-FU M Nm 12.70 19.25 25.26

Tabelle 8: Zusammenfassung Leistungswerte aus den Messreihen

6.3.1 Analyse der elektrischen Leistungsaufnahme P1el

Die Darstellung des gesamten Messbereichs von 25% bis 100% Nennlast zeigt sehr grob, dass die elektrische Aufnahmeleistung des Netzbetriebs (blau) im tiefen Teillastbereich höher liegt als bei den untersuchten Technologien und im Volllastbereich tiefer. Dies lässt den grundsätzlichen Schluss zu, dass alle Technologien, wenn überhaupt, nur dann sinnvoll sind, wenn der Motor im gesamten Lastprofil sehr deutlich im Teillastbereich läuft.

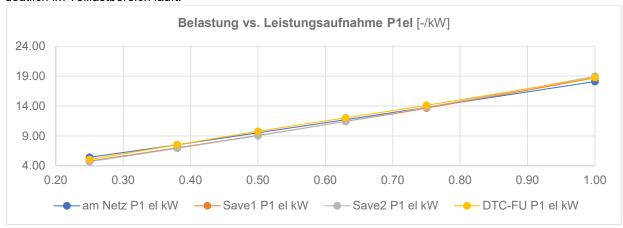


Abbildung 25: Belastung vs. Leistungsaufnahme P1el

Wenn man nun den Teillastbereich näher betrachtet (Abbildung 26: Belastung vs. P1el, Zoom Teillast), stellt man fest:

- 1. Die reduzierte Leistungsaufnahme des SinuMEC ist in beiden Save-Stufen sehr ähnlich und merklich tiefer als die Leistungsaufnahme «am Netz».
- 2. Der DTC-Frequenzumrichter zeigt nur im absoluten Teillastbereich bis etwa 40% der Nennlast eine positive Wirkung, über dieser Lastgrenze führt er zu einer höheren Leistungsaufnahme als im Betriebsfall «am Netz».

Abbildung 26: Belastung vs. P1el, Zoom Teillast

Stellt man alle Verläufe der elektrischen Leistungsaufnahme in Bezug zur Leistungsaufnahme «am Netz» dar, erkennt man sehr anschaulich, welche Technologie beziehungsweise Schaltstufe am SinuMEC in welchem Lastfall zu welcher prozentualen Reduktion des Leistungsbedarfs führt (Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el).

Die Angaben beider Hersteller bezüglich der möglichen prozentualen Energieeinsparung (Reduktion der elektrischen Leistungsaufnahme) werden deutlich unterschritten.

Technologie / Einsparung	25% Last		50% Last	
	Soll	Ist	Soll	Ist
DTC- Frequenzumrichter	10%	6.9%	2%	2.5%
Variable Spannungsversorgung SinuMEC (Save 2)	35%	13.6%	25%	5.1%

Tabelle 9: Technologieeinsparung

Der DTC-Frequenzumrichter zeigt bei extrem tiefer Last (<25%–38%) eine positive Wirkung, welche jedoch sehr stark abfällt und geringer ausfällt als in der Dokumentation beschrieben. Über 38% Last hat der Einsatz dieses Frequenzumrichters eine zusätzliche Leistungsaufnahme von 2 bis 3% zur Folge. Das deckt sich in etwa mit dem Verlust von konventionellen Frequenzumrichtern (ohne DTC-Technologie). Aus dieser Betrachtung ist der Einsatz dieser Technologie zum Zweck der Energieeffizienzsteigerung alleine nicht sinnvoll.

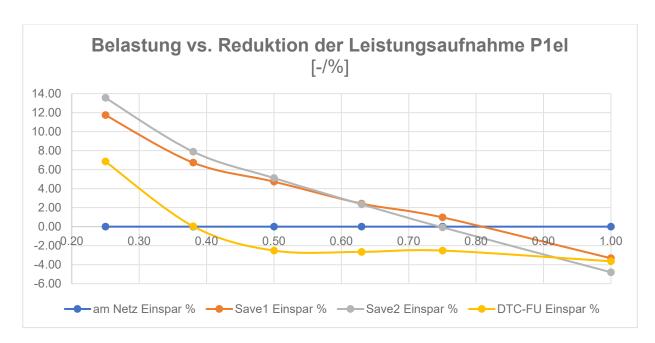


Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el

6.3.2 Analyse der elektrischen Stromaufnahme I und des cos Phi

Betrachtet man die Stromaufnahme, fällt die grosse Reduktion derselben durch den Einsatz der Technologien beziehungsweise die Reduktion der Spannung U auf (Abbildung 28: Belastung vs. Reduktion der Stromaufnahme I). Im unteren Teillastbereich liegt diese beim SinuMEC bei 40%, der DTC-Frequenzumrichter führt in diesem Bereich zu einer Reduktion von 25%. Die dargestellte, viel kleinere Leistungsreduktion P1el (Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el) erklärt sich durch den gleichzeitigen Anstieg des cos Phi (Abbildung 29: Belastung vs. cos Phi).

Die starke Reduktion der Stromaufnahme I beim Einsatz des SinuMEC führt gemäss Hersteller dazu, dass die Spannungsverluste in der Zuleitung ebenfalls reduziert werden. Dieser Effekt sei der Einsparung des Gerätes zusätzlich zur direkten Leistungseinsparung anzurechnen.

Führt man dazu mit nachstehender Formel ein Rechenbeispiel anhand der Messwerte mit SinuMEC bei 25% Last in Stufe Save 2 durch,

$$\Delta u = \frac{\sqrt{3} \cdot 100 \cdot I \cdot L \cdot \cos \varphi}{K \cdot A \cdot U}$$

Formel 1: Spannungsverlust in 3-Phasen-Wechselstromleitern

so zeigt sich, dass der Spannungsverlust im Leiter, vor allem bedingt durch den höheren cos Phi, ansteigt. Die Aussage des Herstellers trifft somit nicht zu.

Am Netz (ohne Blindleistungs-Kompensationsanlage):

I = 12.76 A, Länge = 100 m, cos Phi = 0.62, K = 56 m*mm^2/Ohm, A = 6 mm^2, U = 400 V ergibt 1.02 %

SinuMEC Save 2:

I = 7.72 A, Länge = 100 m, cos Phi = 0.87, K = 56 m*mm^2/Ohm, A = 6 mm^2, U = 220 V ergibt 1.57 %

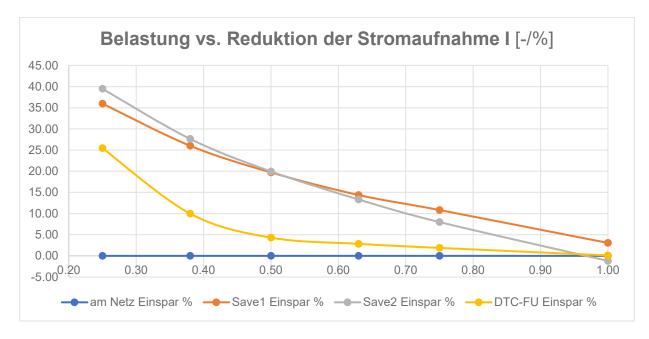


Abbildung 28: Belastung vs. Reduktion der Stromaufnahme I

Eine Reduktion der am Motor anliegenden Aussenleiterspannung hat einen geringeren Fluss (Feldschwächung) und ebenfalls einen reduzierten Läuferstrom I zur Folge. Die Spannungsabsenkung führt folglich zu einem Rückgang des Momentes M. Das Anlauf- und das Kippmoment werden in quadratischer Funktion mit der Spannung verringert. Der cos Phi steigt bei abnehmender Spannung und konstanter Last an und der Anteil Blindleistung sinkt entsprechend.

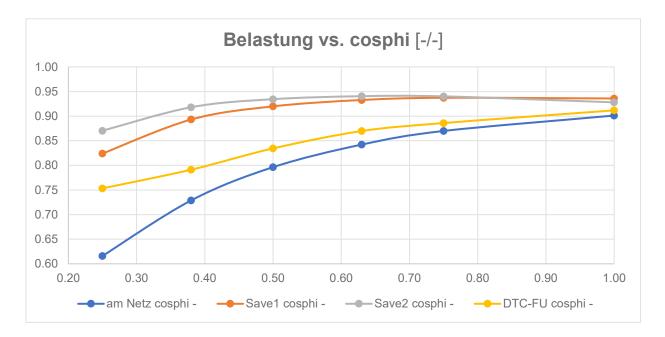


Abbildung 29: Belastung vs. cos Phi

Das durch die Technologien erwirkte Anheben des cos Phi kann auch als positiver Nebeneffekt genutzt werden, um damit den Einbau einer Blindleistungskompensationsanlage einzusparen. Dies wird von den Anbietern auch entsprechend als weiterer Vorteil kommuniziert.

Diese Aussage trifft zu. Es ist jedoch vor allem bei Nachrüstungen davon auszugehen, dass die entsprechenden Anlagen in vielen Fällen bereits mit einer Kompensationsanlage ausgerüstet sind und daher dieser Effekt nicht genutzt wird.

6.3.3 Analyse der Drehzahl beziehungsweise des Schlupfs

Der Schlupf des Motors nimmt bei konstanter Last und abnehmender Spannung U zu (Abbildung 30: Belastung vs. Drehzahl n). Mit dem DTC-Frequenzumrichter, wo die Drehzahl variabel eingestellt werden kann, liegt diese, bei diesbezüglich unveränderten Parametern, über den gesamten Lastbereich über der Drehzahl des Motors «am Netz».

Der Einsatz der Spannungsreduktion (SinuMEC) im Volllastbereich führt zu einer Feldschwächung und ist damit nicht sinnvoll. Dieser Betrieb kann zu Schäden am Motor und/oder am SinuMEC führen.

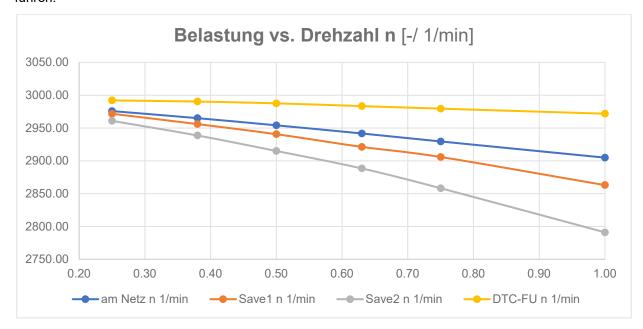


Abbildung 30: Belastung vs. Drehzahl n

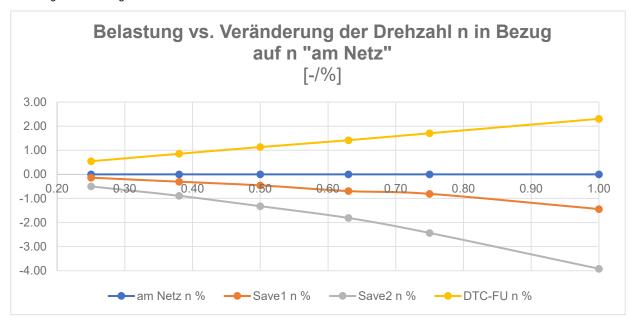


Abbildung 31: Belastung vs. Veränderung der Drehzahl n in Bezug auf n «am Netz»

6.3.4 Analyse des Gesamt- beziehungsweise Systemwirkungsgrades ETA tot

Betrachtet man den Gesamtwirkungsgrad, der zusätzlich zum Motor, auch die Technologie selbst beinhaltet, stellt man grundsätzlich fest, dass der DTC-Frequenzumrichter, wie aus der Leistungsbetrachtung ersichtlich (Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el), nur im äussersten Teillastbereich eine positive Auswirkung auf den Gesamtwirkungsgrad hat und somit zu einer Effizienzsteigerung führt.

Die SinuMEC-Technologie, welche die Aussenleiterspannung U substanziell absenkt, führt wie eingangs angenommen dazu, dass der Wirkungsgradverlauf des Motors nach links, hin zum Teillastbereich, verschoben wird. Die Verschiebung der Wirkungsgradkennlinie ist in Abbildung 32: Belastung vs. ETA tot sehr gut ersichtlich. Es fällt zudem auf, dass die Wirkungsgradkennlinie beider Save-Stufen des SinuMEC sozusagen identisch sind, obwohl eine Differenz von 80 V Aussenleiterspannung vorliegt. Dies lässt die These zu, dass das Gerät sozusagen eine identische Einsparung erzielen könnte, wenn es nur mit einer Save-Stufe ausgerüstet wäre.

Die grundsätzliche Annahme, dass ein Motor damit im Teillastbereich effizienter betrieben werden kann, ist folglich korrekt. In dieser Messreihe hat sich zudem gezeigt, dass der gemessene Bestpunktwirkungsgrad des Motors leicht höher liegt als der Bestpunkt des Volllastwirkungsgrades «am Netz».

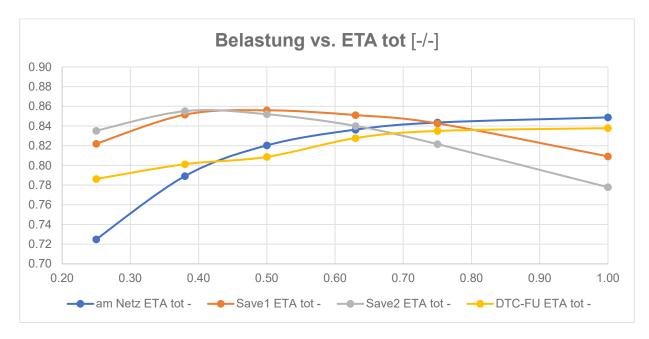


Abbildung 32: Belastung vs. ETA tot

Analog zur prozentualen Reduktion der elektrischen Leistungsaufnahme (Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el) wird anhand des ermittelten Systemwirkungsgrades die Effizienzsteigerung berechnet (Abbildung 33: Belastung vs. Effizienzsteigerung in Bezug auf ETA tot). Der Vergleich der beiden Ergebnisse zeigt, dass die grundsätzliche Aussage damit übereinstimmt.

Die leicht abweichenden Ergebnisse erklären sich grösstenteils durch die unterschiedliche Betrachtungsrichtung (Effizienzsteigerung vs. Leistungsreduktion).

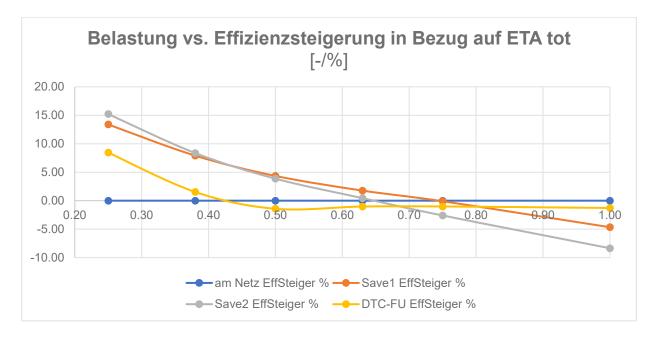


Abbildung 33: Belastung vs. Effizienzsteigerung in Bezug auf ETA tot

Reduktion der Leistungsaufnahme P1el in % (Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el):

С	25% Last	50% Last
DTC- Frequenzumrichter	6.9%	-2.5%
Variable Spannungsversorgung SinuMEC (Save 2)	13.6%	5.1%

Tabelle 10: Reduktion der Leistungsaufnahme P1el

Effizienzsteigerung bezogen auf den Gesamtwirkungsgrad ETA tot in % (Abbildung 33<u>:</u> Belastung vs. Effizienzsteigerung in Bezug auf ETA tot):

Technologie / Einsparung	25% Last	50% Last
DTC- Frequenzumrichter	8.5%	-1.5%
Variable Spannungsversorgung SinuMEC (Save 2)	15.2%	3.9%

Tabelle 11: Effizienzsteigerung bezogen auf den Gesamtwirkungsgrad ETA tot

6.4 Zusammenfassung, Fazit aus der Labormessreihe

Die Messresultate sind plausibel und daher für die Ableitung von Erkenntnissen geeignet.

6.4.1 DTC-Frequenzumrichter-Technologie

(siehe Abbildung 21: DTC-Frequenzumrichter)

Diese Technologie dient nicht primär dem Zweck der Energieeffizienz. Die Aussagen des Herstellers beziehen sich daher auch nur untergeordnet auf diese zusätzliche Funktion. Die gemessenen Einsparungen sind deutlich geringer als in den Herstellerangaben angegeben.

Der Lastbereich, in dem überhaupt Einsparungen realisiert werden können, endet steil abfallend bei 40%. Somit ist die Voraussetzung, ein solches Gerät explizit für diese Anwendung einzusetzen, nicht gegeben.

6.4.2 SinuMEC-Technologie

(siehe Abbildung 19: SinuMEC)

Diese Technologie wurde ausschliesslich zum Zweck der Effizienzsteigerung entwickelt. Die gemessenen Resultate zeigen eine Einsparung, die von 14% bei 25% Auslastung auf 5% bei 50% Auslastung des Motors abfällt. Grundsätzlich sind dies relevante Potenziale bei entsprechend grossen Motoren, welche auf fixer Drehzahl lange in einem tiefen Teillastbereich betrieben werden.

Die vom Hersteller in der Dokumentation genannten Einsparungen von bis zu 40% bei 25% Auslastung des Motors konnten jedoch in keiner Art und Weise nur annähernd erreicht werden. Diesbezügliche Gespräche mit dem Hersteller führten zu Diskussionen, in denen dieser zusätzliche Einsparungen (Blindleistung, geringere Spannungsverluste in Zuleitungen u. a.) geltend machen wollte. Faktisch erreicht die Technologie die proklamierten Einsparungen klar nicht.

Da in diesen Geräten unter anderem mehrere grosse Spulen verbaut sind, sind die Herstellungskosten zusätzlich verhältnismässig hoch. Bei kleineren und mittleren Leistungen (sicher bis 45 kW mit entsprechend hoher Laufleistung im Teillastbereich) lohnt sich der Einsatz hinsichtlich des ROI auch bei sehr grosszügig angelegten Amortisationszeiten nicht.

Die Überprüfung einer noch tieferen Last zeigt, dass die Leistungsreduktion von P1el weiter ansteigt. Dazu wurde ein Messpunkt mit 13.9 % Last ausgewertet. Bei diesem Punkt konnte der SinuMEC auf der Save-2-Stufe 21.96% einsparen, der DTC-Frequenzumrichter wiederum 18.2%. Auch dieser Wert liegt deutlich unter den Herstellerangaben und es bleibt fraglich, wie gross die Zahl der Anwendungen ist, bei denen ein Antrieb bei langer Laufzeit knapp über 10% der Nennbelastung läuft.

6.4.3 Gesamteinsparpotenzial für eine dynamische Regelung des cos Phi und des Drehmoments

Unsere Einschätzung bezüglich Einsparpotenzial (vgl. Kapitel 3.3 Einsparpotenzial) zu Beginn dieser Arbeit lag deutlich höher als die Ergebnisse unserer Labormessungen.

Ursprünglich:

	Min.	Max.
Einsparpotenzial	10%	40%
Verbrauchseinsparung	120 GWh/a	481 GWh/a
Kosteneinsparung (gerundet)	13'000'000 CHF/a	53'000'000 CHF/a
Reduktion CO ₂ -Ausstoss	1'733 t	6'933 t

Tabelle 12: ursprüngliche Einschätzung des Einsparpotenzials

Neue nach Labormessreihe:

	Min.	Max.
Einsparpotenzial (gerundet)	4%	15%
Verbrauchseinsparung	47 GWh/a	183 GWh/a
Kosteneinsparung (gerundet)	5'000'000 CHF/a	20'000'000 CHF/a
Reduktion CO ₂ -Ausstoss	676 t	2'634 t

Tabelle 13: Einschätzung des Einsparpotenzials nach Labormessreihe

Wenn sich eine viel einfachere und deutlich kostengünstigere Technologie finden liesse, mit der die Spannung im Teillastbereich kontrolliert abgesenkt werden könnte, wäre ein Retrofit-Einsatz bei entsprechend geeigneten Anlagen ökologisch und wirtschaftlich durchaus sinnvoll.

7 Literaturverzeichnis

- ABB (24. Januar 2019). Von Technische Anleitung DTC-Regelung ABB konstante Drehmoment-Regelung mit FU:
 - https://library.e.abb.com/public/5db3e7014b506851c1256d280040ed70/TechnicalGuideNo1.pdf abgerufen.
- ABB (24. Januar 2019). Von WhitePaper DTC-Drive ABB:
 https://library.e.abb.com/public/0e07ab6a2de30809c1257e2d0042db5e/ABB_WhitePaper_DTC_A4_20150414.pdf?x-sign=c4eRnaU1dQEQ1hlEpQA+yf0PbsLkVOHe5Klhz50qxUeYrXls36UpUCX1JOXSocEiabgerufen.
- Brändle, F. (24. Januar 2019). Einsatz von FU für konstante Drehzahl, variable Last. (R. Baumann, Interviewer)
- Eidgenössisches Inspektorat für Aufzüge (EIA) des SVTI (2018). Zentrales Aufzugsregister.
- Tieben, R., Brunner C. U., Gloor, R. & Nipkow, J. (2015). Potentialanalyse Rotierende Maschinen und Förderanlagen. Zürich: EnergieSchweiz.

8 Tabellenverzeichnis

Tabelle 1 Einsparpotenzial	14
Tabelle 2: Vergleich der Technologien	16
Tabelle 3: Objekt- und Anlagedaten	22
Tabelle 4: Antriebsdaten	22
Tabelle 5: Werte vor der Modifikation als Datentabelle	26
Tabelle 6 Werte vor der Modifikation als Datentabelle	26
Tabelle 7: Werte nach der Modifikation als Datentabelle	29
Tabelle 8: Zusammenfassung Leistungswerte aus den Messreihen	38
Tabelle 9: Technologieeinsparung	40
Tabelle 10: Reduktion der Leistungsaufnahme P1el	46
Tabelle 11: Effizienzsteigerung bezogen auf den Gesamtwirkungsgrad ETA tot	47
Tabelle 12: ursprüngliche Einschätzung des Einsparpotenzials	49
Tabelle 13: Einschätzung des Einsparpotenzials nach Labormessreihe	49

9 Abbildungsverzeichnis

Abbildung 1: Bremskennlinie eines 22-kW-Asynchron-Drehstrommotors mit 1450 1/min	10
Abbildung 2: Einteilung in Haupt- und Unterkategorien	12
Abbildung 3: Anschlussplan	18
Abbildung 4: verwendetes Messgerät	21
Abbildung 5: Zykluszeit des Produkts	23
Abbildung 7: Spritzgussmaschine	23
Abbildung 6: Spritzgussmaschine	23
Abbildung 8: Elektroschema, Antrieb	23
Abbildung 9: Produktfoto	23
Abbildung 10: Anschlussstelle Messung	23
Abbildung 11 Darstellung von 3 Zyklen der Kunststoffspritzgussmaschine Nr. 14. Motornennleistur P2 = 22kW	•
Abbildung 12: Werte vor der Modifikation als Kennlinien	24
Abbildung 13: Werte nach der Modifikation als Kennlinien	27
Abbildung 15 Zu messende Belastungsverläufe	31
Abbildung 14: zu messende Belastungsverläufe	31
Abbildung 16: Prüfanlage HSR	32
Abbildung 17: Messausrüstung	33
Abbildung 18: Typenschild SinuMEC	34
Abbildung 19: SinuMEC	34
Abbildung 20: Typenschild DTC-FU	34
Abbildung 21: DTC-Frequenzumrichter	34
Abbildung 22: Messaufbau direkt am Netz ohne SinuMEC oder Frequenzumrichter	35
Abbildung 23: Messaufbau mit SinuMEC	36
Abbildung 24: Messaufbau mit DTC-Frequenzumrichter	37
Abbildung 25: Belastung vs. Leistungsaufnahme P1el	39
Abbildung 26: Belastung vs. P1el, Zoom Teillast	39
Abbildung 27: Belastung vs. Reduktion der Leistungsaufnahme P1el	41
Abbildung 28: Belastung vs. Reduktion der Stromaufnahme I	42
Abbildung 29: Belastung vs. cos Phi	43

Abbildung 30: Belastung vs. Drehzahl n	44
Abbildung 31: Belastung vs. Veränderung der Drehzahl n in Bezug auf n «am Netz»	44
Abbildung 32: Belastung vs. ETA tot	45
Abbildung 33: Belastung vs. Effizienzsteigerung in Bezug auf ETA tot	46

10 Rechtliche Hinweise

Die in diesem Dokument vorgelegten Inhalte und Berechnungen dienen lediglich zu Informationszwecken und sind rechtlich unverbindlich. Die Auswertung ergibt sich mathematisch auf Basis von getätigten Annahmen und ist individuell auf ihre Richtigkeit zu prüfen. Die Berechnungsalgorithmen und Produktparameter entsprechen den zum Zeitpunkt der Dateneingabe vorhandenen Kenntnissen. Alle Angaben erheben jedoch keinen Anspruch auf Vollständigkeit und Richtigkeit. Änderungen und Irrtümer vorbehalten. Produktabbildungen sind beispielhaft und können vom Original abweichen. Bitte beachten Sie, dass die Zahlenangaben nur grob geschätzte Berechnungen durch uns sind.